Ab Initio Study of the Vibrational Spectra of $\mathbf{N}_{\mathbf{9}}-\mathrm{H}$ and $\mathrm{N}_{7}-\mathbf{H}$ Adenine and 9-Methyladenine

Joanna Wiörkiewicz-Kuczera ${ }^{\dagger}$ and Martin Karplus*
Contribution from the Department of Chemistry, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138 . Received June 28, 1989

Abstract

The structures and vibrational spectra of adenine in two tautomeric forms ($\mathrm{N}_{9}-\mathrm{H}$ and $\mathrm{N}_{7}-\mathrm{H}$) and 9-methyladenine have been calculated at the Hartree-Fock level with a $4-21 \mathrm{G}$ basis set and are in good agreement with experimental structural data. The $a b$ initio normal modes have been used to interpret experimental vibrational data for adenine and 9 -methyladenine isolated in an argon matrix, in the crystalline solid and in solution. Experimental band assignments of the spectra in the low-temperature matrix and in the polycrystalline state have been analyzed and several reassignments have been proposed. Overall the agreement between the experimental argon matrix and calculated results is very good; for the scaled ab initio frequencies the deviation from experiment is 3% for the entire frequency range. The 4-21G geometries and force constants for adenine and 9 -methyladenine have been used to calculate the vibrational spectra of N -deuterated derivatives of the studied systems. These results have proved to be helpful in analyzing experimental band assignments in spectra of deuterated adenine derivatives and in verifying the assignments for the undeuterated molecules.

1. Introduction

The biological importance of the nucleic acid bases is widely recognized. Numerous experimental and theoretical studies of the structure and vibrations of these molecules have been made. ${ }^{1-21}$ However, for adenine in particular, a full understanding of the internal motions is not yet available. Adenine and its derivatives are particularly interesting nucleic acid compounds because of their multiple roles, including that of nucleic acid building blocks, reaction catalysts, and energy-storing molecules. ${ }^{22}$

Vibrational data for adenine and its derivatives include IR low-temperature argon matrix spectra of adenine and 9methyladenine. ${ }^{9}$ IR and Raman spectra of polycrystalline adenine ${ }^{11.23}$ and 9 -methyladenine, ${ }^{12}$ and Raman spectra of adenine and adenosine 5^{\prime}-monophosphate (AMP) in solution. ${ }^{14.15 .18}$ Low-temperature rare gas matrix isolation spectroscopy yields relatively sharp and well-defined bands for monomeric molecules with minimal influence of intermolecular interactions. Thus, in the absence of gas-phase data, low-temperature matrix isolation spectroscopy provides particularly suitable information for comparison with quantum mechanical and force field results. It may also serve as a reference for the analysis of molecular spectra in solution and in crystals and for the study of intermolecular so-lute-solute and solute-solvent interactions.

Ab initio calculations have proven to be of assistance in the interpretation of vibrational spectra of complex molecules. Such calculations have been recently reported for uracil, ${ }^{2.3,24}$ cytosine, ${ }^{4,8}$ and guanine. ${ }^{19}$ Here we report the results of calculations of the vibrational spectra of adenine and its derivatives at the 4-21G level with the gaussian 82 program. The $4-2$ IG basis set has been used previously to calculate the vibrational frequencies of benzene ${ }^{25,26}$ and uracil ${ }^{2.3}$ and yielded a deviation of the theoretical frequencies from the experimental values of about 10%. Analyses of ab initio calculations have shown that the size of the basis set used and the level of the correlation correction affects the calculated vibrational frequencies. ${ }^{26}$ The 4-21G basis set employed in this work is a compromise between the size of the systems studied and the desired accuracy of the results. There exist a number of semiempirical calculations for adenine and related compounds, ${ }^{27-30}$ although no vibrational studies were performed.

Geometry optimization and frequency calculations have been made for three systems: the $\mathrm{N}_{9}-\mathrm{H}$ and $\mathrm{N}_{7}-\mathrm{H}$ tautomers of adenine, and 9-methyladenine (Figure 1). Both $\mathrm{N}_{9}-\mathrm{H}$ and $\mathrm{N}_{7}-\mathrm{H}$ tautomeric forms of adenine have been included in the analysis of the spectrum of adenine in the argon matrix ${ }^{9}$ to test for the

[^0]presence of the rare $\mathrm{N}_{7}-\mathrm{H}$ tautomer. The compound 9methyladenine is a model for adenine in adenosine and its derivatives.

As a test of the accuracy of 4-21G assignments, the vibrational spectra of deuterated derivatives of adenine and 9 -methyladenine have been calculated by using the optimized geometries and force constants of the undeuterated parent molecule. These results prove to be useful in the assignments of matrix or vapor-phase experiments on isotopic derivatives of adenine. They are also used in

[^1]

9-Methyladenine
Figure 1. Atom numbering in $\mathrm{N}_{9}-\mathrm{H}$ and $\mathrm{N}_{7}-\mathrm{H}$ tautomers of adenine and 9 -methyladenine.
a more qualitative way to confirm band assignments from other phases and to correct misassignments.

The method used is outlined in section 2 below. Section 3 presents the results and discusses their significance. The conclusions are given in section 4.

2. Methods

The calculations were carried out at the Hartree-Fock level with the Pople split-valence shell 4-21G basis set. ${ }^{31}$ Geometry optimization was performed with the GAUSSIAN 82 program ${ }^{32}$ with no constraint on the planarity of the molecules. In previous studies molecules with amino groups have been found to be slightly nonplanar. ${ }^{27}$ For the two adenine tautomers considered in this work a planar geometry was found to be the most stable at the 4-21G level. In 9-methyladenine the optimized geometry was also practically planar, with negligible deviations from nonplanarity (less than $0.001 \AA$ for atoms other than the methyl hydrogens). The calculated geometric parameters are listed in Table I, together with average results from a series of crystallographic structures for adenine and its derivatives. ${ }^{33}$

The second derivative matrices for the Cartesian displacements were obtained by numerical differentiation of the analytical gradient at the equilibrium geometry. The Cartesian matrices were transformed to internal coordinates with the aid of the program molvib, ${ }^{34}$ which was also used to assign normal modes. The potential energy distribution matrix PED ${ }^{35}$ was calculated as follows:

$$
\mathbf{P E D}_{i j}=\mathbf{L}_{i j} \mathbf{L}_{i j}^{-1}
$$

where \mathbf{L} is the transformation matrix between the internal (symmetry) coordinates and normal coordinates; \mathbf{L}^{T} and \mathbf{L}^{-1} denote the transpose and the inverse of \mathbf{L}, respectively.

The nonredundant internal coordinates used in this work are given in Tables II and III. The internal coordinates for the imidazole ring have been found from a redundancy analysis. ${ }^{36,37}$ For the pyrimidine ring, internal coordinates given by Pulay et al. ${ }^{25}$ for benzene are used. The out-of-plane ring deformation about the central $\mathrm{C}_{4}-\mathrm{C}_{5}$ bond (Figure 1) is described by coordinate 39 in Table II.

[^2]Table I. 4-21G Optimized Structures of $\mathrm{N}_{9}-\mathrm{H}$ Adenine, N_{r} - H Adenine, and 9-Methyladenine

coordinate ${ }^{\text {a }}$	$\begin{gathered} \underset{9}{\mathrm{~N}_{9}-\mathrm{H}} \\ \text { adenine } \end{gathered}$	$\underset{\substack{\mathrm{N}_{7}-\mathrm{H} \\ \text { adenine }}}{ }$	9-methyladenine	adenine crystal	
				mean value ${ }^{b}$	$\mathrm{SD}^{\text {c }}$
Bond Lengths, \AA					
$\mathrm{N}_{1}-\mathrm{C}_{2}$	1.3381	1.3450	1.3386	1.338	0.012
$\mathrm{C}_{2}-\mathrm{N}_{3}$	1.3256	1.3157	1.3251	1.332	0.014
$\mathrm{N}_{3}-\mathrm{C}_{4}$	1.3352	1.3389	1.3359	1.342	0.009
$\mathrm{C}_{4}-\mathrm{C}_{5}$	1.3817	1.3881	1.3818	1.382	0.010
$\mathrm{C}_{5}-\mathrm{C}_{6}$	1.3964	1.3978	1.3964	1.409	0.005
$\mathrm{N}_{1}-\mathrm{C}_{6}$	1.3364	1.3252	1.3365	1.349	0.011
$\mathrm{C}_{5}-\mathrm{N}_{7}$	1.3991	1.3901	1.3975	1.385	0.010
$\mathrm{N}_{7}-\mathrm{C}_{8}$	1.2933	1.3732	1.2950	1.312	0.007
$\mathrm{C}_{8}-\mathrm{N}_{9}$	1.3900	1.2978	1.3881	1.367	0.016
$\mathrm{C}_{4}-\mathrm{N}_{9}$	1.3688	1.3925	1.3660	1.376	0.009
$\mathrm{C}_{6}-\mathrm{N}_{10}$	1.3408	1.3556	1.3414	1.337	0.015
$\mathrm{N}_{9}-\mathrm{C}_{11}$			1.4596		
$\begin{aligned} & \mathrm{C}_{2}-\mathrm{H}_{11} \\ & \left(\mathrm{C}_{2}-\mathrm{H}_{12}\right)^{d} \end{aligned}$	1.0678	1.0673	1.0679		
$\begin{gathered} \mathrm{C}_{8}-\mathrm{H}_{12} \\ \left(\mathrm{C}_{8}-\mathrm{H}_{13}\right)^{d} \end{gathered}$	1.0637	1.0644	1.0645		
$\mathrm{N}_{4}-\mathrm{H}_{13}$		0.9936			
$\mathrm{N}_{9}-\mathrm{H}_{13}$	0.9949				
$\mathrm{N}_{10}-\mathrm{H}_{14}$	0.9957	0.9963	0.9956		
$\mathrm{N}_{10}-\mathrm{H}_{15}$	0.9957	0.9929	0.9957		
$\mathrm{C}_{11}-\mathrm{H}_{16}$			1.0804		
$\mathrm{C}_{11}-\mathrm{H}_{17}$			1.0806		
$\mathrm{C}_{11}-\mathrm{H}_{18}$			1.0806		
Bond Angles, deg					
$\mathrm{C}_{6}-\mathrm{N}_{1}-\mathrm{C}_{2}$	119.77	120.12	119.78	118.8	0.8
$\mathrm{N}_{1}-\mathrm{C}_{2}-\mathrm{N}_{3}$	126.62	126.08	126.59	129.0	0.6
$\mathrm{C}_{2}-\mathrm{N}_{3}-\mathrm{C}_{4}$	113.27	114.84	113.23	110.8	0.6
$\mathrm{N}_{3}-\mathrm{C}_{4}-\mathrm{C}_{5}$	125.14	122.92	125.26	126.9	0.8
$\mathrm{C}_{4}-\mathrm{C}_{5}-\mathrm{C}_{6}$	117.26	118.57	117.16	116.9	0.6
$\mathrm{N}_{1}-\mathrm{C}_{6}-\mathrm{C}_{5}$	117.93	117.47	117.97	117.6	0.6
$\mathrm{C}_{4}-\mathrm{C}_{5}-\mathrm{N}_{7}$	110.13	105.71	109.85	110.7	0.5
$\mathrm{C}_{5}-\mathrm{N}_{7}-\mathrm{C}_{8}$	105.25	106.01	104.97	103.9	0.7
$\mathrm{N}_{7}-\mathrm{C}_{8}-\mathrm{N}_{9}$	112.28	113.12	112.87	113.8	0.7
$\mathrm{C}_{4}-\mathrm{N}_{9}-\mathrm{C}_{8}$	106.85	105.68	106.16	105.9	0.5
$\mathrm{N}_{3}-\mathrm{C}_{4}-\mathrm{N}_{9}$	129.37	127.60	128.60	127.4	0.6
$\mathrm{C}_{6}-\mathrm{C}_{5}-\mathrm{N}_{7}$	132.60	135.71	132.99	132.3	0.7
$\mathrm{N}_{1}-\mathrm{C}_{6}-\mathrm{N}_{10}$	119.35	118.08	119.31	119.0	0.8
$\mathrm{C}_{5}-\mathrm{C}_{6}-\mathrm{N}_{10}$	122.72	124.45	122.73	123.4	1.0
$\mathrm{C}_{4}-\mathrm{N}_{9}-\mathrm{C}_{11}$			125.66		
$\mathrm{C}_{8}-\mathrm{N}_{9}-\mathrm{Cl}_{11}$			128.18		
$\begin{aligned} & \mathrm{N}_{1}-\mathrm{C}_{2}-\mathrm{H}_{11} \\ & \left(\mathrm{~N}_{1}-\mathrm{C}_{2}-\mathrm{H}_{12}\right)^{d} \end{aligned}$	116.31	116.16	116.27		
$\begin{aligned} & \mathrm{N}_{3}-\mathrm{C}_{2}-\mathrm{H}_{11} \\ & \left(\mathrm{~N}_{3}-\mathrm{C}_{2}-\mathrm{H}_{12}\right)^{d} \end{aligned}$	117.07	117.76	117.15		
$\begin{aligned} & \mathrm{N}_{7}-\mathrm{C}_{8}-\mathrm{H}_{12} \\ & \left(\mathrm{~N}_{7}-\mathrm{C}_{8}-\mathrm{H}_{13}\right)^{d} \end{aligned}$	125.85	121.71	125.80		
$\begin{aligned} & \mathrm{N}_{9}-\mathrm{C}_{8}-\mathrm{H}_{12} \\ & \left(\mathrm{~N}_{9}-\mathrm{C}_{8}-\mathrm{H}_{13}\right)^{d} \end{aligned}$	121.87	125.18	121.33		
$\mathrm{C}_{5}-\mathrm{N}_{7}-\mathrm{H}_{13}$		128.04			
$\mathrm{C}_{8}-\mathrm{N}_{7}-\mathrm{H}_{13}$		125.95			
$\mathrm{C}_{4}-\mathrm{H}_{9}-\mathrm{H}_{13}$	125.54				
$\mathrm{C}_{8}-\mathrm{N}_{9}-\mathrm{H}_{13}$	127.62				
$\mathrm{C}_{6}-\mathrm{N}_{10}-\mathrm{H}_{14}$	118.93	117.55	118.94		
$\mathrm{C}_{6}-\mathrm{N}_{10}-\mathrm{H}_{15}$	120.74	123.29	120.72		
$\mathrm{H}_{14}-\mathrm{N}_{10}-\mathrm{H}_{15}$	120.33	119.16	120.35		
$\mathrm{N}_{9}-\mathrm{C}_{11}-\mathrm{H}_{16}$			108.83		
$\mathrm{N}_{9}-\mathrm{C}_{11}-\mathrm{H}_{17}$			110.06		
$\mathrm{N}_{9}-\mathrm{C}_{11}-\mathrm{H}_{18}$			110.06		
$\mathrm{H}_{16}-\mathrm{C}_{11}-\mathrm{H}_{17}$			109.49		
$\mathrm{H}_{16}-\mathrm{C}_{11}-\mathrm{H}_{18}$			109.49		
$\mathrm{H}_{17}-\mathrm{C}_{11}-\mathrm{H}_{18}$			108.91		
	Dihe	dral Angl	, deg		
$\mathrm{C}_{4}-\mathrm{N}_{9}-\mathrm{C}_{11}-\mathrm{H}_{16}$			180.0		
$\mathrm{C}_{4}-\mathrm{N}_{9}-\mathrm{C}_{11}-\mathrm{H}_{17}$			60.0		
$\mathrm{C}_{4}-\mathrm{N}_{9}-\mathrm{C}_{11}-\mathrm{H}_{18}$			-60.0		

[^3]Table II. Vibrational Coordinates for $\mathrm{N}_{9}-\mathrm{H}$ and $\mathrm{N}_{7}-\mathrm{H}$ Adenine

no. ${ }^{\text {a }}$	definition ${ }^{\text {b }}$	N^{c}	description	symbol
1	$\mathrm{N}_{10}-\mathrm{H}_{14}$	1.0	$\mathrm{N}_{10} \mathrm{H}_{14} \mathrm{str}$	$\nu\left(\mathrm{NH}_{2}\right)$
2	$\mathrm{N}_{10}-\mathrm{H}_{15}$	1.0	$\mathrm{N}_{10} \mathrm{H}_{15}$ str	$\nu\left(\mathrm{NH}_{2}\right)$
3^{d}	$\mathrm{N}_{9}-\mathrm{H}_{13}$	1.0	$\mathrm{N}_{9} \mathrm{H}$ str	$\nu\left(\mathrm{N}_{9} \mathrm{H}\right)$
4	$\mathrm{C}_{2}-\mathrm{H}_{11}$	1.0	$\mathrm{C}_{2} \mathrm{H}$ str	$\nu\left(\mathrm{C}_{2} \mathrm{H}\right)$
5	$\mathrm{C}_{8}-\mathrm{H}_{12}$	1.0	$\mathrm{C}_{8} \mathrm{H}$ str	$\nu\left(\mathrm{C}_{8} \mathrm{H}\right)$
6	$\mathrm{C}_{6}-\mathrm{N}_{10}$	1.0	$\mathrm{C}_{6} \mathrm{~N}_{10}$ str	$\nu\left(\mathrm{C}_{6} \mathrm{~N}_{10}\right)$
7	$\mathrm{C}_{5}-\mathrm{C}_{6}$	1.0	$\mathrm{C}_{5} \mathrm{C}_{6}$ str	$\nu\left(\mathrm{C}_{5} \mathrm{C}_{6}\right)$
8	$\mathrm{C}_{4}-\mathrm{C}_{5}$	1.0	$\mathrm{C}_{4} \mathrm{C}_{5}$ str	$\nu\left(\mathrm{C}_{5} \mathrm{C}_{6}\right)$
9	$\mathrm{N}_{3}-\mathrm{C}_{4}$	1.0	$\mathrm{N}_{3} \mathrm{C}_{4}$ str	$\nu\left(\mathrm{N}_{3} \mathrm{C}_{4}\right)$
10	$\mathrm{C}_{2}-\mathrm{N}_{3}$	1.0	$\mathrm{C}_{2} \mathrm{~N}_{3}$ str	$\nu\left(\mathrm{C}_{2} \mathrm{~N}_{3}\right)$
11	$\mathrm{N}_{1}-\mathrm{C}_{2}$	1.0	$\mathrm{N}_{1} \mathrm{C}_{2}$ str	$\nu\left(\mathrm{N}_{1} \mathrm{C}_{2}\right)$
12	$\mathrm{N}_{1}-\mathrm{C}_{6}$	1.0	$\mathrm{N}_{1} \mathrm{C}_{6}$ str	$\nu\left(\mathrm{N}_{1} \mathrm{C}_{6}\right)$
13	$\mathrm{C}_{5}-\mathrm{N}_{7}$	1.0	$\mathrm{C}_{5} \mathrm{~N}_{7}$ str	$\nu\left(\mathrm{C}_{5} \mathrm{~N}_{7}\right)$
14	$\mathrm{N}_{7}-\mathrm{C}_{8}$	1.0	$\mathrm{N}_{7} \mathrm{C}_{8}$ str	$\nu\left(\mathrm{N}_{7} \mathrm{C}_{8}\right)$
15	$\mathrm{C}_{8}-\mathrm{N}_{9}$	1.0	$\mathrm{C}_{8} \mathrm{~N}_{9}$ str	$\nu\left(\mathrm{C}_{8} \mathrm{~N}_{9}\right)$
16	$\mathrm{C}_{4}-\mathrm{N}_{9}$	1.0	$\mathrm{C}_{4} \mathrm{~N}_{9}$ str	$\nu\left(\mathrm{C}_{4} \mathrm{~N}_{9}\right)$
17	$\left(\mathrm{N}_{1}-\mathrm{C}_{2}-\mathrm{H}_{11}\right)-\left(\mathrm{N}_{3}-\mathrm{C}_{2}-\mathrm{H}_{11}\right)$	$2.0^{-1 / 2}$	$\mathrm{C}_{2} \mathrm{H}$ bend	$\beta\left(\mathrm{C}_{2} \mathrm{H}\right)$
18	$\left(\mathrm{N}_{9}-\mathrm{C}_{8}-\mathrm{H}_{12}\right)-\left(\mathrm{N}_{7}-\mathrm{C}_{8}-\mathrm{H}_{12}\right)$	$2.0^{-1 / 2}$	$\mathrm{C}_{8} \mathrm{H}$ bend	$\beta\left(\mathrm{C}_{8} \mathrm{H}\right)$
19	$\left(\mathrm{C}_{4}-\mathrm{N}_{9}-\mathrm{H}_{13}\right)-\left(\mathrm{C}_{8}-\mathrm{N}_{9}-\mathrm{H}_{13}\right)$	$2.0^{-1 / 2}$	$\mathrm{N}_{9} \mathrm{H}$ bend	$\beta\left(\mathrm{N}_{9} \mathrm{H}\right)$
20	$\left(\mathrm{C}_{5}-\mathrm{C}_{6}-\mathrm{N}_{10}\right)-\left(\mathrm{N}_{1}-\mathrm{C}_{6}-\mathrm{N}_{10}\right)$	$2.0^{-1 / 2}$	$\mathrm{C}_{6} \mathrm{H}_{10}$ bend	$\beta\left(\mathrm{C}_{6} \mathrm{~N}_{10}\right)$
21	$2\left(\mathrm{H}_{14}-\mathrm{N}_{10}-\mathrm{H}_{15}\right)-\left(\mathrm{C}_{6}-\mathrm{N}_{10}-\mathrm{H}_{14}\right)-\left(\mathrm{C}_{6}-\mathrm{N}_{10}-\mathrm{H}_{15}\right)$	$6.0^{-1 / 2}$	NH_{2} sciss	$\delta\left(\mathrm{NH}_{2}\right)$
22	$\left(\mathrm{C}_{6}-\mathrm{N}_{10}-\mathrm{H}_{14}\right)-\left(\mathrm{C}_{6}-\mathrm{N}_{10}-\mathrm{H}_{15}\right)$	2.0 ${ }^{-1 / 2}$	NH_{2} rock	$\mathrm{r}\left(\mathrm{NH}_{2}\right)$
23	$\begin{aligned} & \left(\mathrm{N}_{1}-\mathrm{C}_{6}-\mathrm{C}_{5}\right)-\left(\mathrm{C}_{6}-\mathrm{C}_{5}-\mathrm{C}_{4}\right)+\left(\mathrm{C}_{5}-\mathrm{C}_{4}-\mathrm{N}_{3}\right)-\left(\mathrm{C}_{4}-\mathrm{N}_{3}-\mathrm{C}_{2}\right)+\left(\mathrm{N}_{3}-\mathrm{C}_{2}-\mathrm{N}_{1}\right)- \\ & \left(\mathrm{C}_{2}-\mathrm{N}_{1}-\mathrm{C}_{6}\right) \end{aligned}$	$6.0^{-1 / 2}$	6-membered ring def I	$\delta\left(\mathrm{r}_{1}\right)$
24	$2\left(N_{1}-C_{6}-C_{5}\right)-\left(C_{6}-C_{5}-C_{4}\right)-\left(C_{5}-C_{4}-N_{3}\right)+2\left(C_{4}-N_{3}-C_{2}\right)-\left(N_{3}-C_{2}-N_{1}\right)-$	$12.0^{-1 / 2}$	6-membered ring def II	$\delta\left(\mathrm{r}_{2}\right)$
25	$\left(\mathrm{C}_{6}-\mathrm{C}_{5}-\mathrm{C}_{4}\right)-\left(\mathrm{C}_{5}-\mathrm{C}_{4}-\mathrm{N}_{3}\right)+\left(\mathrm{N}_{3}-\mathrm{C}_{2}-\mathrm{N}_{1}\right)-\left(\mathrm{C}_{2}-\mathrm{N}_{1}-\mathrm{C}_{6}\right)$	2.0^{-1}	6-membered ring def III	$\delta\left(\mathrm{r}_{3}\right)$
26	$\begin{aligned} & \left(-5^{1 / 2}+1\right)\left(\mathrm{C}_{4}-\mathrm{C}_{5}-\mathrm{N}_{7}\right)+\left(5^{1 / 2}+1\right)\left(\mathrm{C}_{5}-\mathrm{N}_{1}-\mathrm{C}_{8}\right)-4\left(\mathrm{~N}_{7}-\mathrm{C}_{8}-\mathrm{N}_{9}\right)+ \\ & \left(5^{1 / 2}+1\right)\left(\mathrm{C}_{8}-\mathrm{N}_{9}-\mathrm{C}_{4}\right)-\left(5^{1 / 2}-1\right)\left(\mathrm{N}_{9}-\mathrm{C}_{4}-\mathrm{C}_{5}\right) \end{aligned}$	$40.0^{-1 / 2}$	5 -membered ring def I	$\delta\left(\mathrm{r}_{4}\right)$
27	$-\left(\mathrm{C}_{4}-\mathrm{C}_{5}-\mathrm{N}_{7}\right)+2\left(2 \mathrm{c}^{2}-1\right)\left(\mathrm{C}_{5}-\mathrm{N}_{7}-\mathrm{C}_{8}\right)-2\left(2 \mathrm{c}^{2}-1\right)\left(\mathrm{C}_{8}-\mathrm{N}_{9}-\mathrm{C}_{4}\right)+\left(\mathrm{N}_{9}-\mathrm{C}_{4}-\mathrm{C}_{5}\right)$	M^{\prime}	5 -membered ring def II	
	angle between $\mathrm{C}_{2}-\mathrm{H}_{11}$ bond and $\mathrm{N}_{1}-\mathrm{N}_{3}-\mathrm{C}_{2}$ plane		$\mathrm{C}_{2} \mathrm{H} \text { wag }$	$\gamma\left(\mathrm{C}_{2} \mathrm{H}\right)$
	angle between $\mathrm{C}_{8}-\mathrm{H}_{12}$ bond and $\mathrm{N}_{7}-\mathrm{N}_{9}-\mathrm{C}_{8}$ plane		$\mathrm{C}_{8} \mathrm{H}$ wag	$\gamma\left(\mathrm{C}_{8} \mathrm{H}\right)$
308.h	angle between $\mathrm{N}_{9}-\mathrm{H}_{13}$ bond and $\mathrm{C}_{4}-\mathrm{C}_{8}-\mathrm{N}_{9}$ plane		$\mathrm{N}_{9} \mathrm{H}$ wag	$\gamma\left(\mathrm{N}_{9} \mathrm{H}\right)$
	angle between $\mathrm{C}_{6}-\mathrm{N}_{10}$ bond and $\mathrm{N}_{1}-\mathrm{C}_{5}-\mathrm{C}_{6}$ plane		$\mathrm{C}_{6} \mathrm{~N}_{10}$ wag	$\gamma^{\gamma}\left(\mathrm{C}_{6} \mathrm{~N}_{10}\right)$
32	$\left(\mathrm{N}_{1}-\mathrm{C}_{6}-\mathrm{N}_{10}-\mathrm{H}_{14}\right)-\left(\mathrm{C}_{5}-\mathrm{C}_{6}-\mathrm{N}_{10}-\mathrm{H}_{15}\right)$	$2.0{ }^{-1 / 2}$	NH_{2} tors	$\mathrm{t}\left(\mathrm{NH}_{2}\right)$
33	$\left(\mathrm{N}_{1}-\mathrm{C}_{6}-\mathrm{N}_{10}-\mathrm{H}_{14}\right)+\left(\mathrm{C}_{5}-\mathrm{C}_{6}-\mathrm{N}_{10}-\mathrm{H}_{15}\right)$	$2.0{ }^{-1 / 2}$	NH_{2} wag	w(NH_{2})
34 35	$\begin{aligned} & \left(\mathrm{N}_{1}-\mathrm{C}_{6}-\mathrm{C}_{5}-\mathrm{C}_{4}\right)-\left(\mathrm{C}_{6}-\mathrm{C}_{5}-\mathrm{C}_{4}-\mathrm{N}_{3}\right)+\left(\mathrm{C}_{5}-\mathrm{C}_{4}-\mathrm{N}_{3}-\mathrm{C}_{2}\right)-\left(\mathrm{C}_{4}-\mathrm{N}_{3}-\mathrm{C}_{2}-\mathrm{N}_{1}\right)+ \\ & \left(\mathrm{N}_{3}-\mathrm{C}_{2}-\mathrm{N}_{1}-\mathrm{C}_{6}\right)-\left(\mathrm{C}_{2}-\mathrm{N}_{1}-\mathrm{C}_{6}-\mathrm{C}_{5}\right) \end{aligned}$	$6.0^{-1 / 2}$ $2.0-1$	oopl 6-membered ring def I	$\chi\left(\mathrm{r}_{1}\right)$
35 36	$-\left(\mathrm{N}_{1}-\mathrm{C}_{6}-\mathrm{C}_{5}-\mathrm{C}_{4}\right)+\left(\mathrm{C}_{5}-\mathrm{C}_{4}-\mathrm{N}_{3}-\mathrm{C}_{2}\right)-\left(\mathrm{C}_{4}-\mathrm{N}_{3}-\mathrm{C}_{2}-\mathrm{N}_{1}\right)+\left(\mathrm{C}_{2}-\mathrm{N}_{1}-\mathrm{C}_{6}-\mathrm{C}_{5}\right)$	2.0^{-1}	oopl 6-membered ring def II	$\chi\left(r_{2}\right)$
36	$\begin{aligned} & -\left(\mathrm{N}_{1}-\mathrm{C}_{6}-\mathrm{C}_{5}-\mathrm{C}_{4}\right)+2\left(\mathrm{C}_{6}-\mathrm{C}_{5}-\mathrm{C}_{4}-\mathrm{N}_{3}\right)-\left(\mathrm{C}_{5}-\mathrm{C}_{4}-\mathrm{N}_{3}-\mathrm{C}_{2}\right)-\left(\mathrm{C}_{4}-\mathrm{N}_{3}-\mathrm{C}_{2}-\mathrm{N}_{1}\right)+ \\ & \quad 2\left(\mathrm{~N}_{3}-\mathrm{C}_{2}-\mathrm{N}_{1}-\mathrm{C}_{6}\right)-\left(\mathrm{C}_{2}-\mathrm{N}_{1}-\mathrm{C}_{6}-\mathrm{C}_{5}\right) \end{aligned}$	$12.0^{-1 / 2}$	oopl 6-membered ring def III	$\chi\left(r_{3}\right)$
37	$\begin{aligned} & 4\left(\mathrm{~N}_{9}-\mathrm{C}_{4}-\mathrm{C}_{5}-\mathrm{N}_{7}\right)-\left(5^{1 / 2}+1\right)\left(\mathrm{C}_{4}-\mathrm{C}_{5}-\mathrm{N}_{7}-\mathrm{C}_{8}\right)+\left(5^{1 / 2}-1\right)\left(\mathrm{C}_{5}-\mathrm{N}_{7}-\mathrm{C}_{8}-\mathrm{N}_{9}\right)+ \\ & \left(5^{1 / 2}-1\right)\left(\mathrm{N}_{7}-\mathrm{C}_{8}-\mathrm{N}_{9}-\mathrm{C}_{4}\right)-\left(5^{1 / 2}+1\right)\left(\mathrm{C}_{8}-\mathrm{N}_{9}-\mathrm{C}_{4}-\mathrm{C}_{5}\right) \end{aligned}$	$40.0^{-1 / 2}$	oopl 5-membered ring def I	$x\left(r_{4}\right)$
38	$\begin{aligned} & 2\left(2 c^{2}-1\right)\left(\mathrm{C}_{4}-\mathrm{C}_{5}-\mathrm{N}_{7}-\mathrm{C}_{8}\right)-\left(\mathrm{C}_{5}-\mathrm{N}_{7}-\mathrm{C}_{8}-\mathrm{N}_{9}\right)+\left(\mathrm{N}_{7}-\mathrm{C}_{8}-\mathrm{N}_{9}-\mathrm{C}_{4}\right)- \\ & 2\left(2 c^{2}-1\right)\left(\mathrm{C}_{8}-\mathrm{N}_{9}-\mathrm{C}_{4}-\mathrm{C}_{5}\right) \end{aligned}$		oopl 5-membered ring def II	$\chi\left(r_{5}\right)$
39	$\left(\mathrm{N}_{3}-\mathrm{C}_{4}-\mathrm{C}_{5}-\mathrm{N}_{7}\right)-\left(\mathrm{N}_{9}-\mathrm{C}_{4}-\mathrm{C}_{5}-\mathrm{C}_{6}\right)$	$2.0{ }^{1 / 2}$	oopl butterfly ring def	$\chi\left(r_{6}\right)$
$\begin{aligned} & \quad{ }^{a} 1- \\ & \text { and } \nu(\\ & (9-4 \\ & \mathrm{N}_{7} \mathrm{H} \end{aligned}$	-27, in-plane vibrations; 28-39, out-of-plane vibrations. ${ }^{b}$ Atom numbering as $\left(\mathrm{N}_{7} \mathrm{H}\right)$ for $\mathrm{N}_{7}-\mathrm{H}$ adenine. ${ }^{e}\left(\mathrm{C}_{8}-\mathrm{N}_{7}-\mathrm{H}_{13}\right)-\left(\mathrm{C}_{5}-\mathrm{N}_{7}-\mathrm{H}_{13}\right), \mathrm{N}_{7} \mathrm{H}$ bend, and $\beta\left(\mathrm{N}_{7}\right.$ $\left.\left.4\left(5^{1 / 2}\right)\right)^{1 / 2}\right] / 8=\cos ^{2}(\pi / 5) .8$ The out-of-plane coordinate is defined according wag, and $\gamma\left(\mathrm{N}_{7} \mathrm{H}\right)$ for N_{7} adenine.	$\begin{aligned} & { }^{c} N \text { is } \\ & \text { I adel } \\ & \text { Angle } \end{aligned}$	normalizing factor. ${ }^{d} \mathrm{~N}_{1}-\mathrm{H}$ $f_{M}=\left[10+32 c^{2}\left(c^{2}-1\right)\right]^{-1}$ ween $\mathrm{N}_{7}-\mathrm{H}_{13}$ bond and $\mathrm{C}_{5}-\mathrm{C}^{2}$	$\begin{aligned} & \mathrm{N}_{7} \mathrm{H} \text { str, } \\ & c=[5+ \\ & \mathrm{N}, \\ & \mathrm{~N}_{7} \text { plane }, \end{aligned}$

CRAY X-MP; most of the time was used for numerical evaluation of the second derivatives.

The vibrational spectra of N -deuterated adenine and N -deuterated 9 -methyladenine were obtained by the Wilson GF method. ${ }^{36}$ The 4-21G optimized geometry and force constant matrix of the parent molecule were used, with the assumption that they are not affected by isotopic substitution. ${ }^{36}$

Different scaling factors would be needed to correct the systematic overestimation of diagonal force constants obtained from Hartree-Fock calculations and the more complex pattern of the off-diagonal terms. A range of scaling factors has been used previously for different internal coordinates in benzene, ${ }^{25}$ pyridine, ${ }^{39,40}$ uracil, ${ }^{2,3,24}$ pyrrole, ${ }^{41}$ maleimide, ${ }^{42}$ and imidazole. ${ }^{43}$ Accumulation of ab initio calculation results and experimental gas-phase and matrix data for different pyrimidine and purine bases should lead to a more systematic adjustment of scaling factors and test the transferability of these factors among related mo-
(38) Wiörkiewicz-Kuczera, J.; Karplus, M., to be submitted for pubication.
(39) Pongor, G.; Fogarasi, G.; Boggs, J. E. J. Mol. Spectrosc. 1985, $1 / 44$. 445.
(40) Pongor, G.; Fogarasi, G.; Boggs, J. E. J. Am. Chem. Soc. 1985, 107, 6487.
(41) Xie, Y.; Fan, K.; Boggs, J. E. Mol. Phys. 1986, 58, 401.
(42) Csāszār, P.; Csäszăr, A.; Harsänyi, L.; Boggs, J. E. J. Mol. Struct. 1986, 136, 323.
(43) Fan, K.; Xie, Y.; Boggs, J. E. THEOCHEM 1986, 136, 339.
lecular fragments. The calculated frequencies of all normal modes were all scaled by a factor of 0.91 , which brings the calculated and experimental frequencies of the reliably assigned $\nu\left(\mathrm{NH}_{2}\right)$ and $\nu\left(\mathrm{N}_{9} \mathrm{H}\right)$ [or $\nu(\mathrm{N}, \mathrm{H})]$ vibrations in the argon matrix spectrum into close agreement. With the single scaling factor used here, the overall deviation between scaled calculated frequencies and the experimental values from the argon matrix is less than 3%. The root mean square (rms) deviation of the scaled calculated frequencies from the experimental values is less than 2% for in-plane modes, and 5% for out-of-plane modes; only a few bands assigned to out-of-plane deformations are observed experimentally, however.

Ab initio 4-2lG force constants for $\mathrm{N}_{9}-\mathrm{H}$ and $\mathrm{N}_{7}-\mathrm{H}$ adenine and 9 -methyladenine will be given elsewhere. ${ }^{38}$

3. Results and Discussion

3.1. Equilibrium Geometries, Dipole Moments, and Tautomerization Energy. The 4-21G minimized geometry for $\mathrm{N}_{9}-\mathrm{H}$ and $\mathrm{N}_{7}-\mathrm{H}$ tautomers of adenine and 9 -methyladenine are presented in Table I, together with crystallographic data for adenine. ${ }^{33}$ The calculated bond lengths and bond angles agree very well with the crystallographic structures of neutral adenine derivatives.

The 4-21G dipole moments are 2.37, 7.52, and 2.57 D for $\mathrm{N}_{9}-\mathrm{H}$ adenine, $\mathrm{N}_{7}-\mathrm{H}$ adenine, and 9 -methyladenine, respectively Experimental dipole moments are not available for adenine tautomers; the calculated values may however be compared with the

Table III. Vibrational Coordinates for 9-Methyladenine

no. ${ }^{\text {a }}$	definition ${ }^{\text {b }}$	N^{c}	description	symbol
1-2	same as 1-2 for adenine			
3	$\mathrm{C}_{2}-\mathrm{H}_{12}$	1.0	$\mathrm{C}_{2} \mathrm{H}$ str	$\nu\left(\mathrm{C}_{2} \mathrm{H}\right)$
4	$\mathrm{C}_{8}-\mathrm{H}_{13}$	1.0	$\mathrm{C}_{8} \mathrm{H}$ str	$\nu\left(\mathrm{C}_{8} \mathrm{H}\right)$
5	same as 6 for adenine			
6	$\mathrm{N}_{9}-\mathrm{C}_{11}$	1.0	$\mathrm{N}_{9} \mathrm{C}_{11} \mathrm{str}$	$\nu\left(\mathrm{C}_{9} \mathrm{H}_{11}\right)$
7-16	same as 7-16 for adenine			
17	$\left(\mathrm{N}_{1}-\mathrm{C}_{2}-\mathrm{H}_{12}\right)-\left(\mathrm{N}_{3}-\mathrm{C}_{2}-\mathrm{H}_{12}\right)$	$2.0^{-1 / 2}$	$\mathrm{C}_{2} \mathrm{H}$ bend	$\beta\left(\mathrm{C}_{2} \mathrm{H}\right)$
18	$\left(\mathrm{N}_{9}-\mathrm{C}_{8}-\mathrm{H}_{13}\right)-\left(\mathrm{N}_{7}-\mathrm{C}_{8}-\mathrm{H}_{13}\right)$	$2.0^{-1 / 2}$	$\mathrm{C}_{8} \mathrm{H}$ bend	$\beta\left(\mathrm{C}_{8} \mathrm{H}\right)$
19	same as 20 for adenine			
20	$\left(\mathrm{C}_{4}-\mathrm{N}_{9}-\mathrm{C}_{11}\right)-\left(\mathrm{C}_{8}-\mathrm{N}_{9}-\mathrm{C}_{11}\right)$	$2.0{ }^{-1 / 2}$	$\mathrm{N}_{9} \mathrm{C}_{11}$ bend	$\beta\left(\mathrm{N}_{9} \mathrm{C}_{11}\right)$
21-27	same as 21-27 for adenine			
28	$\left(\mathrm{C}_{11}-\mathrm{H}_{16}\right)+\left(\mathrm{C}_{11}-\mathrm{H}_{17}\right)+\left(\mathrm{C}_{11}-\mathrm{H}_{18}\right)$	$3.0^{-1 / 2}$	CH_{3} str	$\nu\left(\mathrm{CH}_{3}\right) \mathrm{A}^{\prime}$
29	$2\left(\mathrm{C}_{11}-\mathrm{H}_{16}\right)-\left(\mathrm{C}_{11}-\mathrm{H}_{17}\right)-\left(\mathrm{C}_{11}-\mathrm{H}_{18}\right)$	$6.0^{-1 / 2}$	CH_{3} str	$\nu\left(\mathrm{CH}_{3}\right) \mathrm{A}^{\prime}$
30	$\begin{aligned} & \left(\mathrm{H}_{16}-\mathrm{C}_{11}-\mathrm{H}_{17}\right)+\left(\mathrm{H}_{16}-\mathrm{C}_{11}-\mathrm{H}_{18}\right)+\left(\mathrm{H}_{17}-\mathrm{C}_{11}-\mathrm{H}_{18}\right)- \\ & \left(\mathrm{N}_{9}-\mathrm{C}_{11}-\mathrm{H}_{16}\right)-\left(\mathrm{N}_{9}-\mathrm{C}_{11}-\mathrm{H}_{17}\right)-\left(\mathrm{N}_{9}-\mathrm{C}_{11}-\mathrm{H}_{18}\right) \end{aligned}$	$6.0^{-1 / 2}$	CH_{3} bend	$\delta\left(\mathrm{CH}_{3}\right) \mathrm{A}^{\prime}$
31	$2\left(\mathrm{H}_{17}-\mathrm{C}_{11}-\mathrm{H}_{18}\right)-\left(\mathrm{H}_{16}-\mathrm{C}_{11}-\mathrm{H}_{17}\right)-\left(\mathrm{H}_{16}-\mathrm{C}_{11}-\mathrm{H}_{18}\right)$	$6.0^{-1 / 2}$	CH_{3} bend	$\delta\left(\mathrm{CH}_{3}\right) \mathrm{A}^{\prime}$
32	$2\left(\mathrm{~N}_{9}-\mathrm{C}_{11}-\mathrm{H}_{16}\right)-\left(\mathrm{N}_{9}-\mathrm{C}_{11}-\mathrm{H}_{17}\right)-\left(\mathrm{N}_{9}-\mathrm{C}_{11}-\mathrm{H}_{18}\right)$	$6.0^{-1 / 2}$	CH_{3} bend	$\delta\left(\mathrm{CH}_{3}\right) \mathrm{A}^{\prime}$
33	$\left(\mathrm{C}_{11}-\mathrm{H}_{18}\right)-\left(\mathrm{C}_{11}-\mathrm{H}_{17}\right)$	$2.0^{-1 / 2}$	CH_{3} str	$\nu\left(\mathrm{CH}_{3}\right) \mathrm{A}^{\prime \prime}$
34	$\left(\mathrm{H}_{16}-\mathrm{C}_{11}-\mathrm{H}_{18}\right)-\left(\mathrm{H}_{16}-\mathrm{C}_{11}-\mathrm{H}_{17}\right)$	$2.0^{-1 / 2}$	CH_{3} bend	$\delta\left(\mathrm{CH}_{3}\right) \mathrm{A}^{\prime \prime}$
35	$\left(\mathrm{N}_{9}-\mathrm{C}_{11}-\mathrm{H}_{18}\right)-\left(\mathrm{N}_{9}-\mathrm{C}_{11}-\mathrm{H}_{17}\right)$	$2.0^{-1 / 2}$	CH_{3} bend	$\delta\left(\mathrm{CH}_{3}\right) \mathrm{A}^{\prime \prime}$
$36^{\text {d }}$	angle between $\mathrm{C}_{2}-\mathrm{H}_{12}$ bond and $\mathrm{N}_{1}-\mathrm{N}_{3}-\mathrm{C}_{2}$ plane		$\mathrm{C}_{2} \mathrm{H}$ wag	$\gamma\left(\mathrm{C}_{2} \mathrm{H}\right)$
$37{ }^{\text {d }}$ 38	angle between $\mathrm{C}_{8}-\mathrm{H}_{13}$ bond and $\mathrm{N}_{7}-\mathrm{N}_{9}-\mathrm{C}_{8}$ plane		$\mathrm{C}_{8} \mathrm{H}$ wag	$\gamma\left(\mathrm{C}_{8} \mathrm{H}\right)$
38 389 480	same as 31 for adenine angle between $\mathrm{N}_{9}-\mathrm{C}_{11}$ bond and $\mathrm{C}_{4}-\mathrm{C}_{8}-\mathrm{N}_{9}$ plane		N_{9}	$\gamma\left(\mathrm{N}_{9} \mathrm{C}_{11}\right.$
$\begin{aligned} & 40-47 \\ & 48 \end{aligned}$	same as 32-39 for adenine $\left(\mathrm{C}_{8}-\mathrm{N}_{9}-\mathrm{C}_{11}-\mathrm{H}_{16}\right)+\left(\mathrm{C}_{8}-\mathrm{N}_{9}-\mathrm{C}_{11}-\mathrm{H}_{17}\right)+\left(\mathrm{C}_{8}-\mathrm{N}_{9}-\mathrm{C}_{11}-\mathrm{H}_{18}\right)$	$3.0^{-1 / 2}$	CH_{3} tors	$t\left(\mathrm{CH}_{3}\right)$

${ }^{a}$ 1-27, in-plane vibrations; $28-35$, stretching and deformation motions of the methyl group; $36-48$, out-of-plane vibrations. ${ }^{b}$ Atom numbering as in Figure 1. ${ }^{c} N$ is the normalizing factor. ${ }^{d}$ The out-of-plane coordinate is defined according to ref 36.
experimental dipole moments of purine (2.92 D in ethyl acetate) and hypoxanthine (3.16 D in acetic acid). ${ }^{44}$ The calculated dipole moment of 9 -methyladenine may be compared with the dipole moment of 9 -n-butyladenine (3.0 D in CCl_{4}). ${ }^{45}$ The large difference between the dipole moments of the two tautomers arises from the change in the component parallel to the $\mathrm{C}_{4}-\mathrm{C}_{5}$ bond. The atomic populations other than at $\mathrm{N}_{7}, \mathrm{~N}_{9}$, and the tautomeric hydrogen are essentially the same; in the $\mathrm{N}_{9}-\mathrm{H}$ tautomer, they are $\mathrm{N}_{7}(-0.66), \mathrm{N}_{9}(-0.57), \mathrm{H}_{13}(0.39)$ and in the $\mathrm{N}_{7}-\mathrm{H}$ tautomer, $\mathrm{N}_{7}(-1.0), \mathrm{N}_{9}(-0.64), \mathrm{H}_{13}(0.37)$. There is a resulting shift in the center of charge along the $\mathrm{C}_{4}-\mathrm{C}_{5}$ bond direction corresponding to a change in the contributions from the three atoms to the dipole moment.

The $\mathrm{N}_{9}-\mathrm{H}$ tautomer was found to be favored by $\Delta E_{0}=\Delta E^{\mathrm{SCF}}$ $+\Delta E_{0}{ }^{\text {vib }}=10.6 \mathrm{kcal} \mathrm{mol}^{-1}$ over the $\mathrm{N}_{7}-\mathrm{H}$ tautomer at the $4-21 \mathrm{G}$ level after correcting for zero-point vibrations. The energy difference between the two tautomers calculated at the $6-31 \mathrm{G}^{*}$ for geometries optimized at the $3-21 \mathrm{G}$ level is $9.8 \mathrm{kcal} \mathrm{mol}{ }^{-1} .{ }^{10} \mathrm{~A}$ value of $6 \mathrm{kcal} \mathrm{mol}^{-1}$ has been previously calculated by using the MNDO method. ${ }^{27}$ The energy difference between the $\mathrm{N}_{7}-\mathrm{H}$ and $\mathrm{N}_{9}-\mathrm{H}$ tautomers calculated here suggests that the $\mathrm{N}_{7}-\mathrm{H}$ tautomer is unlikely to be observed in the gas phase or low-temperature matrices by IR spectroscopy. However, in the low-temperature argon matrix, ${ }^{9}$ the experimental spectrum appears to be a superposition of vibrations of both tautomers (see section 3.2). From a comparison of the calculated dipole moment for the $\mathrm{N}_{9}-\mathrm{H}$ and $\mathrm{N}_{7}-\mathrm{H}$ tautomers it is expected that the relative tautomeric populations in various media will depend on the polarity of the solvent; i.e., the population of the $\mathrm{N}_{7}-\mathrm{H}$ tautomer is expected to increase with the polarity of the medium. Experimental estimates of the population of the $\mathrm{N}_{7}-\mathrm{H}$ tautomer range from 15% in DMSO at $37^{\circ} \mathrm{C}$ from chemical shifts in the carbon NMR spectrum of adenine ${ }^{46}$ to 22% in water at $20^{\circ} \mathrm{C}$ from T-jump relaxation measurements ${ }^{47}$ these values would correspond to a free energy difference of 1.1 and $0.7 \mathrm{kcal} \mathrm{mol}^{-1}$, respectively.
3.2. Vibrational Spectra. 3.2.1. Adenine. The calculated vibrational spectra of $\mathrm{N}_{9}-\mathrm{H}$ and $\mathrm{N}_{7}-\mathrm{H}$ tautomers of adenine are

[^4]presented in Table IV together with the argon matrix spectrum of adenine ${ }^{9}$ and the Raman spectrum of polycrystalline adenine. ${ }^{11}$ In the $3600-1000-\mathrm{cm}^{-1}$ region, all but $\nu(\mathrm{CH})$ vibrations in the argon matrix and $\nu\left(\mathrm{NH}_{2}\right)$ and $\nu(\mathrm{NH})$ vibrations in the crystal are observed in the experimental spectra. Below $1000 \mathrm{~cm}^{-1}$ most in-plane vibrations are observed in both the low-temperature matrix and crystal spectra. Only three lines corresponding to calculated $\delta(r)$ and $\beta\left(\mathrm{C}_{6} \mathrm{~N}_{10}\right)$ modes were missing from the experimental spectrum. For only one calculated frequency assigned to $\delta(r)$ deformations no appropriate band is observed in the crystal spectrum. For out-of-plane vibrations only 5 of the expected 12 modes for each tautomer are observed in the Ar matrix spectrum; 6 bands in the crystal spectrum have been assigned to out-of-plane modes.
$3600-3000-\mathrm{cm}^{-1}$ Range. In this region bands connected with the stretching vibrations $\nu(\mathrm{NH})$ and $\nu(\mathrm{CH})$ appear. The frequencies calculated at 3922 and $3910 \mathrm{~cm}^{-1}$ corresponding to stretching vibrations of the NH_{2} group in the $\mathrm{N}_{7}-\mathrm{H}$ and $\mathrm{N}_{9}-\mathrm{H}$ tautomers, respectively, were scaled to 3566 and $3555 \mathrm{~cm}^{-1}$. The scaling factor (see section 2) was chosen to obtain close agreement between the calculated and experimental frequencies of the reliably assigned $\nu\left(\mathrm{NH}_{2}\right)$ and $\nu(\mathrm{NH})$ vibrations. The experimental bands at 3564 and $3556 \mathrm{~cm}^{-1}$ in the Ar matrix spectrum are assigned to antisymmetric $-\mathrm{NH}_{2}$ stretching vibrations in the $\mathrm{N}_{7}-\mathrm{H}$ and $\mathrm{N}_{9}-\mathrm{H}$ tautomers, respectively. The experimental assignment ${ }^{9}$ was based on a comparison of the spectrum of adenine in the Ar matrix with spectra of N -deuterated adenine derivatives, with spectra of molecules containing similar molecular fragments (pyrimidine and imidazole), and on empirical force field calculations. The bands at 3447 and $3440 \mathrm{~cm}^{-1}$ in the Ar matrix spectrum are assigned to symmetric stretching vibrations of the amino group. The calculated frequency difference between the $\mathrm{N}_{9}-\mathrm{H}$ and $\mathrm{N}_{7}-\mathrm{H}$ tautomers is $9-11 \mathrm{~cm}^{-1}$, in accord with the $7-8-\mathrm{cm}^{-1}$ band splitting observed experimentally.

NH stretching (scaled) frequencies have been calculated at 3511 and $3502 \mathrm{~cm}^{-1}$ for the $\mathrm{N}_{7}-\mathrm{H}$ and $\mathrm{N}_{9}-\mathrm{H}$ tautomers, respectively. The calculated frequencies are close to the experimental bands at 3497 and $3488 \mathrm{~cm}^{-1}$ in the Ar matrix spectrum. The calculated frequency difference of $9 \mathrm{~cm}^{-1}$ between the $\mathrm{N}_{9}-\mathrm{H}$ and $\mathrm{N}_{7}-\mathrm{H}$ tautomers is in agreement with the $8-\mathrm{cm}^{-1}$ band splitting in the experimental spectrum.

The calculated (scaled) lines at $3153,3147,3105$, and 3101 cm^{-1} corresponding to $\mathrm{C}_{8}-\mathrm{H}$ and $\mathrm{C}_{2}-\mathrm{H}$ stretching modes are not observed in the IR spectrum due to their low intensity. The

Table IV. Vibrational Frequencies in Adenine (in cm^{-1}) (Contribution in \%)

Table IV (Continued)

Table IV (Continued)

$\mathrm{N}_{9}-\mathrm{H}$ adenine			$\mathrm{N}_{7}-\mathrm{H}$ adenine			adenine in Ar matrix		polycrystalline adenine (Raman)	
calc	scaled ${ }^{\text {a }}$	descrptn ${ }^{\text {b }}$	calc	scaled ${ }^{\text {a }}$	descrptn ${ }^{\text {b }}$	exp	descrptn	exp	descrptn
557	506	$\begin{aligned} & \nu\left(\mathrm{C}_{4} \mathrm{~N}_{9}\right)(12) \\ & \beta\left(\mathrm{C}_{6} \mathrm{~N}_{10}\right)(27) \\ & \delta\left(\mathrm{r}_{3}\right)(23) \end{aligned}$						535	$\delta(\mathrm{r})+\beta\left(\mathrm{C}_{6} \mathrm{~N}_{10}\right)$
354	322	$\begin{array}{ll} \chi\left(r_{2}\right) & (15) \\ \chi\left(r_{3}\right) & (41) \\ \chi\left(r_{4}\right) & (23) \\ \chi\left(r_{6}\right) & (11) \end{array}$	362	329	$\begin{aligned} & t\left(\mathrm{NH}_{2}\right)(15) \\ & \chi\left(\mathrm{r}_{3}\right)(30) \\ & \chi\left(\mathrm{r}_{4}\right)(18) \\ & \chi\left(\mathrm{r}_{6}\right)(17) \end{aligned}$			315	
			341	310	$\begin{aligned} & \mathrm{t}\left(\mathrm{NH}_{2}\right)(26) \\ & \mathrm{w}\left(\mathrm{NH}_{2}\right)(37) \\ & \chi\left(\mathrm{r}_{2}\right)(18) \end{aligned}$				
			312	284	$\begin{aligned} & \hat{\beta}\left(\mathrm{C}_{6} \mathrm{~N}_{10}\right)(52) \\ & \delta\left(\mathrm{r}_{3}\right)(14) \\ & \delta\left(\mathrm{r}_{5}\right)(10) \end{aligned}$				
291	265	$\begin{aligned} & \beta\left(\mathrm{C}_{6} \mathrm{~N}_{10}\right)(51) \\ & \delta\left(\mathrm{r}_{3}\right)(15) \\ & \delta\left(\mathrm{r}_{5}\right)(10) \end{aligned}$						330	$\beta\left(\mathrm{C}_{6} \mathrm{~N}_{10}\right)+\delta(\mathrm{r})$
253	230	$\begin{aligned} & \chi\left(\mathrm{r}_{2}\right) \\ & \chi\left(\mathrm{r}_{6}\right)(68) \end{aligned}$	248	225	$\begin{aligned} & x\left(r_{2}\right)(10) \\ & \chi\left(r_{6}\right)(61) \end{aligned}$			240	
203	185	$\begin{aligned} & \gamma\left(\mathrm{C}_{6} N_{10}\right)(17) \\ & \chi\left(r_{1}\right)(15) \\ & \chi\left(r_{2}\right)(48) \\ & \chi\left(r_{3}\right)(14) \end{aligned}$							
			184	167	$\begin{aligned} & \gamma\left(\mathrm{C}_{6} \mathrm{~N}_{10}\right)(12) \\ & \chi\left(r_{1}\right)(12) \\ & \chi\left(\mathrm{r}_{2}\right)(45) \\ & \chi\left(r_{3}\right)(14) \\ & \chi\left(r_{4}\right)(10) \\ & \hline \end{aligned}$				

[^5]calculated frequency splitting for $\nu(\mathrm{CH})$ modes in the $\mathrm{N}_{7}-\mathrm{H}$ and $\mathrm{N}_{9}-\mathrm{H}$ tautomers is $4-6 \mathrm{~cm}^{-1}$. The weak bands at 3125 and 3038 cm^{-1} in the Raman spectrum may be assigned to $\mathrm{C}_{8}-\mathrm{H}$ and $\mathrm{C}_{2}-\mathrm{H}$ stretching vibrations of the $\mathrm{N}_{9}-\mathrm{H}$ adenine tautomer. The calculated frequencies for $\mathrm{C}_{8}-\mathrm{H}$ and $\mathrm{C}_{2}-\mathrm{H}$ stretching modes in adenine are also in accord with the presence of a band at 3126 cm^{-1} in the Ar spectrum of imidazole, and at $3020 \mathrm{~cm}^{-1}$ in the spectrum of pyrimidine. ${ }^{9}$

The $4-2$ IG assignments for the $3600-3000-\mathrm{cm}^{-1}$ frequency range are in agreement with those from earlier empirical force field calculations. ${ }^{9.11 .16}$ The rms deviation of the scaled $4-21 \mathrm{G}$ frequencies from the experimental values is 0.2%.
$2000-1630-\mathrm{cm}^{-1}$ Range. The bands at 1644 and $1637 \mathrm{~cm}^{-1}$ in the Ar spectrum are assigned to the scissoring mode of the NH_{2} group in the $\mathrm{N}_{7}-\mathrm{H}$ and $\mathrm{N}_{9}-\mathrm{H}$ tautomers, respectively. The calculated $6-\mathrm{cm}^{-1}$ frequency difference for the two tautomers is in accord with the experimental band splitting of $7 \mathrm{~cm}^{-1}$.

The band at $1675 \mathrm{~cm}^{-1}$ in the Raman spectrum may be assigned to the $\delta\left(\mathrm{NH}_{2}\right)$ mode in the $\mathrm{N}_{9}-\mathrm{H}$ tautomer. The large difference between the calculated and observed frequencies may be the result of intermolecular interactions in the crystal; NH_{2} vibrations have been shown to be particularly sensitive to the environment. ${ }^{4.48}$

The $4-21 \mathrm{G}$ assignments in the $2000-1630-\mathrm{cm}^{-1}$ frequency range are in agreement with earlier experimental assignments. ${ }^{9,1116}$
$1630-1250-\mathrm{cm}^{-1}$ Range. Ring stretching vibrations [$\nu(\mathrm{r})$] of both the pyrimidine and imidazole rings, with contributions from the stretching mode $\nu\left(\mathrm{C}_{6} \mathrm{~N}_{10}\right)$ in the amino group, deformation modes $\beta\left(\mathrm{C}_{8} \mathrm{H}\right)$ and $\beta\left(\mathrm{C}_{2} \mathrm{H}\right)$, and bending modes $\beta(\mathrm{NH})$ are predicted in this region. The difference between frequencies calculated for the $\mathrm{N}_{9}-\mathrm{H}$ and $\mathrm{N}_{7}-\mathrm{H}$ tautomers in this region is $0-29 \mathrm{~cm}^{-1}$; it is interesting to note that the frequency spliting calculated for pyrimidine ring stretching modes ($8-29 \mathrm{~cm}^{-1}$) is larger than that calculated for stretching vibrations of the imidazole ring ($2-7 \mathrm{~cm}^{-1}$).

Our calculations suggest the assignment of the bands at 1618 cm^{-1} in the Ar spectrum and at $1612 \mathrm{~cm}^{-1}$ in the Raman spectrum to pyrimidine ring stretching modes. Contrary to the experimental assignment of the band in the Ar matrix spectrum, no contribution
(48) Szczęs̄iak. M.; Nowak, M. J.; Rostkowska, H.; Szczepaniak, K.: Person, W. B.: Shugar, D. J. Am. Chem. Soc. 1983, 105, 5969.
from NH_{2} bending deformations is calculated. Our assignment of this band to $\nu(\mathrm{r})$ vibrations is supported by the frequencies obtained for adenine- d_{3} and the experimental spectrum of ade-nine- d_{3} (see section 3.2.4) in this region, in which a band at 1610 cm^{-1} is found. We do not find that ring bending modes contribute to the $1612-\mathrm{cm}^{-1}$ Raman band, as suggested by Majoube ${ }^{11}$ on the basis of empirical force field calculations.

The bands at 1598 and $1597 \mathrm{~cm}^{-1}$ in the Ar and Raman spectra, respectively, may be assigned to $\nu(\mathrm{r})$ vibrations of the pyrimidine ring. Here again no contributions from ring bending modes to the $1597-\mathrm{cm}^{-1}$ Raman band are obtained at the $4-21 \mathrm{G}$ level. The band at $1481 \mathrm{~cm}^{-1}$ in the Ar spectrum and the band at $1482 \mathrm{~cm}^{-1}$ in the Raman spectrum are predicted to be associated with $\nu(\mathrm{r})$ modes of the imidazole ring, with a contribution from the $\beta\left(\mathrm{C}_{8} \mathrm{H}\right)$ mode; in the case of the $\mathrm{N}_{7}-\mathrm{H}$ tautomer a small contribution from the $\mathrm{N}_{7}-\mathrm{H}$ bending deformation is also found. The $\beta\left(\mathrm{N}_{9} \mathrm{H}\right)$ bending mode in the $\mathrm{N}_{9}-\mathrm{H}$ tautomer is predicted to contribute to lower frequency vibrations. The assignment of these two bands to $\nu(r)$ vibrations of the five-membered ring is supported by the presence of a band at $1480 \mathrm{~cm}^{-1}$ in the Ar spectrum of imidazole. ${ }^{9}$

The band at $1472 \mathrm{~cm}^{-1}$ in the Ar spectrum and the band at 1462 cm^{-1} in the Raman spectrum correspond to $\mathrm{C}_{2} \mathrm{H}$ bending deformations, with a contribution from $\nu(\mathrm{r})$ modes of the pyrimidine ring and $\nu\left(\mathrm{C}_{6} \mathrm{~N}_{10}\right)$ in the amino group. The calculated contributions to normal modes in the $1420-1350-\mathrm{cm}^{-1}$ range are different for the $\mathrm{N}_{9}-\mathrm{H}$ and $\mathrm{N}_{7}-\mathrm{H}$ tautomers. Our calculations suggest the assignment of the band at $1418 \mathrm{~cm}^{-1}$ in the Raman spectrum to $\beta\left(\mathrm{C}_{2} \mathrm{H}\right)$ and $\nu(\mathrm{r})$ modes of the six-membered ring, and not to $\nu\left(\mathrm{C}_{6} \mathrm{~N}_{10}\right)$, as proposed by Majoube; ${ }^{11}$ our assignment is supported by the presence of a band at $1400 \mathrm{~cm}^{-1}$ in the Ar spectrum of pyrimidine. We propose to assign the band at $1388 \mathrm{~cm}^{-1}$ in the Ar spectrum to $\beta(\mathrm{NH})$ deformations, and not to ring stretching modes. ${ }^{9}$ The unassigned bands at 1345 and $1343 \mathrm{~cm}^{-1}$ in the Ar spectrum may correspond to $\nu(\mathrm{r})$ and $\beta\left(\mathrm{C}_{2} \mathrm{H}\right)$ deformations, with a contribution from $\beta\left(\mathrm{N}_{9} \mathrm{H}\right)$ in the $\mathrm{N}_{9}-\mathrm{H}$ tautomer, for which the calculated (scaled) frequencies are 1381 and $1358 \mathrm{~cm}^{-1}$.

The 4-21G frequencies calculated in this region of the spectrum are in agreement with experimental values. Several new assignments or reassignments of the experimental bands both in the argon matrix and in the crystal are proposed.
$1250-1050-\mathrm{cm}^{-1}$ Range. The experimental bands in this region are predicted to correspond to rocking modes of the $-\mathrm{NH}_{2}$ group,
ring stretching deformations, and ring bending deformations. Lines calculated at 1223 and $1211 \mathrm{~cm}^{-1}$ corresponding to the $\mathrm{r}\left(\mathrm{NH}_{2}\right)$ and $\nu(\mathrm{r})$ modes in the $\mathrm{N}_{7}-\mathrm{H}$ and $\mathrm{N}_{9}-\mathrm{H}$ tautomers, respectively, suggest the experimental bands at 1239 and $1227 \mathrm{~cm}^{-1}$ in the Ar spectrum be assigned to these modes, rather than ν $\left(\mathrm{C}_{6} \mathrm{~N}_{10}\right)$ and $\beta(\mathrm{NH})$, as proposed by Sheina et al. ${ }^{9}$ on the basis of empirical force field calculations. The calculated frequency difference for the $\mathrm{r}\left(\mathrm{NH}_{2}\right)$ mode in the $\mathrm{N}_{9}-\mathrm{H}$ and $\mathrm{N}_{7}-\mathrm{H}$ tautomers is $12 \mathrm{~cm}^{-1}$, in agreement with the band splitting observed experimentally. The bands at 1126 and $1061 \mathrm{~cm}^{-1}$ in the Ar spectrum, and at 1164 and $1126 \mathrm{~cm}^{-1}$ in the Raman spectrum, are predicted to correspond to ring stretching modes, with contributions from ring bending modes for the lower frequency.

Reassignments of several bands in this region in the argon matrix spectrum are proposed on the basis of $4-21 \mathrm{G}$ calculations. The frequencies calculated here are in good agreement with experimental values. Overall, for frequencies calculated in the $3600-1050-\mathrm{cm}^{-1}$ spectral region, the rms deviation from values in the Ar matrix spectrum is 1.5%.
$1050-150-\mathrm{cm}^{-1}$ Range. In this region vibrations associated with both in-plane and out-of-plane deformation modes are expected in the spectrum.

In-Plane Modes. The bands at $1017 \mathrm{~cm}^{-1}$ in the Ar spectrum and at $1023 \mathrm{~cm}^{-1}$ in the Raman spectrum are associated with stretching deformations of the five-membered ring, with contributions from $\mathrm{N}-\mathrm{H}$ bending modes. The presence of a band at $1056 \mathrm{~cm}^{-1}$ in the Ar spectrum of imidazole supports this assignment, as opposed to the assignment of the band at $1023 \mathrm{~cm}^{-1}$ to the $\mathrm{r}\left(\mathrm{NH}_{2}\right)$ mode by Majoube. ${ }^{11}$

Lines due to rocking deformations of the $-\mathrm{NH}_{2}$ group, with contributions from ring stretching modes, are calculated at 986 and $979 \mathrm{~cm}^{-1}$ for the $\mathrm{N}_{9}-\mathrm{H}$ and $\mathrm{N}_{7}-\mathrm{H}$ tautomers, respectively. These modes may be associated with the band at $940 \mathrm{~cm}^{-1}$ in the Raman spectrum. This assignment seems to be in better accord with the IR spectrum of pyrimidine, in which no bands have been observed around $950 \mathrm{~cm}^{-1}$, rather than the assignment to $\delta(\mathrm{r})$ modes of the six-membered ring suggested by Majoube. ${ }^{11}$ It is not clear whether the band at $958 \mathrm{~cm}^{-1}$ in the Ar spectrum should be associated with the rocking mode of the amino group or bending deformations of the five-membered ring. There is no corresponding band in the spectrum of imidazole, which would point to the assignment of the band to $\mathrm{r}\left(\mathrm{NH}_{2}\right)$ vibrations; on the other hand, a band is observed at $969 \mathrm{~cm}^{-1}$ in the spectrum of deuterated adenine, which suggests the line corresponds to $\delta(r)$ deformations.

The band at $898 \mathrm{~cm}^{-1}$ in the Raman spectrum is associated with ring bending deformations of the five-membered ring. This assignment is supported by the presence of a band at $900 \mathrm{~cm}^{-1}$ in the spectrum of imidazole. Below $900 \mathrm{~cm}^{-1}$ one vibration with dominant $\nu(r)$ character is predicted for each tautomer. The calculated frequencies at 696 and $692 \mathrm{~cm}^{-1}$ for the $\mathrm{N}_{7}-\mathrm{H}$ and $\mathrm{N}_{9}-\mathrm{H}$ tautomers, respectively, may be associated with the bands at 655 and $722 \mathrm{~cm}^{-1}$ in the Ar and Raman spectra, respectively. Three modes with dominant ring bending character are calculated below $900 \mathrm{~cm}^{-1}$. The lines calculated at 877 and $868 \mathrm{~cm}^{-1}$ for the $\mathrm{N}_{9}-\mathrm{H}$ and $\mathrm{N}_{7}-\mathrm{H}$ tautomers, respectively, corresponding to bending deformations of the pyrimidine ring, may be associated with the band at $849 \mathrm{~cm}^{-1}$ in the Ar spectrum. The calculated frequencies for $\delta(r)$ deformation vibrations at $610 \mathrm{~cm}^{-1}\left(\mathrm{~N}_{9}-\mathrm{H}\right.$ tautomer) and $600 \mathrm{~cm}^{-1}$ ($\mathrm{N}_{7}-\mathrm{H}$ tautomer) correspond to the bands at 612 and $620 \mathrm{~cm}^{-1}$ in the Ar and Raman spectra, respectively. The bands at 566 and $558 \mathrm{~cm}^{-1}$ in the Ar and Raman spectra, respectively, may be assigned to pyrimidine ring bending deformations for which the calculated frequency is $529 \mathrm{~cm}^{-1}$ for the $\mathrm{N}_{9}-\mathrm{H}$ tautomer, and $528 \mathrm{~cm}^{-1}$ for the $\mathrm{N}_{7}-\mathrm{H}$ tautomer. The calculated lowest frequency in-plane vibrations correspond to $\mathrm{C}-\mathrm{N}$ bending deformations of the amino group; the bands at 535 and $330 \mathrm{~cm}^{-1}$ in the Raman spectrum may be associated with the $\beta\left(\mathrm{C}_{6} \mathrm{~N}_{10}\right)$ mode.

As was the case for frequencies above $1000 \mathrm{~cm}^{-1}$, several new assignments or reassignments have been proposed in this region of the spectrum. The rms deviation of the scaled $4-21 \mathrm{G}$ frequencies for in-plane vibrations from experimental values in the
argon matrix spectrum below $1000 \mathrm{~cm}^{-1}$ is 5%, somewhat larger than for higher frequencies.

Out-of-Plane Modes. Not all predicted out-of-plane vibrational modes are observed in the experimental spectra. Frequencies associated with out-of-plane bending $\mathrm{C}_{2}-\mathrm{H}$ deformations are predicted to occur at 1031 and $1026 \mathrm{~cm}^{-1}$, and $\mathrm{C}_{8}-\mathrm{H}$ wagging modes at 938 and $968 \mathrm{~cm}^{-1}$ in the $\mathrm{N}_{9}-\mathrm{H}$ and $\mathrm{N}_{7}-\mathrm{H}$ tautomers, respectively. These bands are not observed in the IR spectrum.

The band at $888 \mathrm{~cm}^{-1}$ in the Ar spectrum may be assigned to out-of-plane deformations of the pyrimidine and imidazole rings for which frequencies at 899 and $897 \mathrm{~cm}^{-1}$ for the $\mathrm{N}_{9}-\mathrm{H}$ and $\mathrm{N}_{7}-\mathrm{H}$ tautomers, respectively, have been calculated. The band at $870 \mathrm{~cm}^{-1}$ in the Raman spectrum may also be assigned to out-of-plane ring deformations in the $\mathrm{N}_{9}-\mathrm{H}$ tautomer. On the basis of empirical force field calculations, Sheina et al. ${ }^{9}$ assigned the band at $888 \mathrm{~cm}^{-1}$ to $\mathrm{C}-\mathrm{H}$ wagging vibrations, while Majoube ${ }^{\mathrm{II}}$ and Letellier et al. ${ }^{13}$ suggested the Raman band at $870 \mathrm{~cm}^{-1}$ is associated with $\mathrm{N}-\mathrm{H}$ wagging modes.

Vibrations associated with out-of-plane $\mathrm{C}_{6}-\mathrm{N}_{10}$ bending deformations in the amino group and ring deformations are predicted around $750 \mathrm{~cm}^{-1}$ ($758 \mathrm{~cm}^{-1}$ for $\mathrm{N}_{9}-\mathrm{H}$ adenine and $745 \mathrm{~cm}^{-1}$ for $\mathrm{N}_{7}-\mathrm{H}$ adenine). These bands are not observed in the IR spectrum. The Raman band at $797 \mathrm{~cm}^{-1}$ associated by Majoube ${ }^{11}$ with $\gamma\left(\mathrm{C}_{2} \mathrm{H}\right)$ vibrations, and by Letellier et al. ${ }^{13}$ with $\chi(\mathrm{r})$ modes, is assigned here to $\gamma\left(\mathrm{C}_{6} \mathrm{~N}_{10}\right)$ and $\chi(r)$ deformations.

In the $700-500-\mathrm{cm}^{-1}$ range out-of-plane ring deformation modes are predicted, as well as out-of-plane deformations of the $-\mathrm{NH}_{2}$ group and out-of-plane $\mathrm{N}-\mathrm{H}$ bending deformations. Five out-of-plane deformation vibrations are predicted for the $\mathrm{N}_{9}-\mathrm{H}$ tautomer in the $700-500-\mathrm{cm}^{-1}$ range: two ring deformation modes, one $\mathrm{N}-\mathrm{H}$ wagging mode, and two out-of-plane deformation modes of the $-\mathrm{NH}_{2}$ group. Four out-of-plane deformation modes are predicted for the $\mathrm{N}_{7}-\mathrm{H}$ tautomer: two ring deformation modes, one $\mathrm{N}-\mathrm{H}$ wagging mode, and one out-of-plane deformation mode of the $-\mathrm{NH}_{2}$ group. For vibrations arising mainly from ring deformation modes the calculated frequency splitting between corresponding modes in the $\mathrm{N}_{9}-\mathrm{H}$ and $\mathrm{N}_{7}-\mathrm{H}$ tautomers is 19-35 cm^{-1}. Out-of-plane deformations of the imidazole ring in the $\mathrm{N}_{9}-\mathrm{H}$ tautomer are predicted to give rise to a line at $688 \mathrm{~cm}^{-1}$. The band at $680 \mathrm{~cm}^{-1}$ in the Raman spectrum may be tentatively assigned to this mode. The corresponding vibration in the $\mathrm{N}_{7}-\mathrm{H}$ tautomer is predicted to lie at $653 \mathrm{~cm}^{-1}$. A vibration corresponding mainly to out-of-plane deformation modes of the pyrimidine ring is predicted at $601 \mathrm{~cm}^{-1}$ for the $\mathrm{N}_{7}-\mathrm{H}$ tautomer, and at $582 \mathrm{~cm}^{-1}$ for the $\mathrm{N}_{9}-\mathrm{H}$ tautomer. The calculated frequency for the $\gamma\left(\mathrm{N}_{9} \mathrm{H}\right)$ mode in the $\mathrm{N}_{9}-\mathrm{H}$ tautomer is $655 \mathrm{~cm}^{-1}$ and lies $100 \mathrm{~cm}^{-1}$ higher than the corresponding $\gamma\left(\mathrm{N}_{7} \mathrm{H}\right)$ mode in the $\mathrm{N}_{7}-\mathrm{H}$ tautomer. This mode may be associated with the band at $650 \mathrm{~cm}^{-1}$ in the IR spectrum of polycrystalline adenine, assigned to wagging deformations of the amino group. ${ }^{11}$

Deformation modes of the $-\mathrm{NH}_{2}$ group in $\mathrm{N}_{9}-\mathrm{H}$ adenine are predicted to give rise to lines at 531 and $525 \mathrm{~cm}^{-1}$ with an equal contribution from torsional and wagging deformations. It is interesting to note that the corresponding wagging and torsion deformations of the amino group in the $\mathrm{N}_{7}-\mathrm{H}$ tautomer are predicted to have significantly different frequencies: they are calculated at 508 and $310 \mathrm{~cm}^{-1}$. The larger frequency difference calculated for the $\mathrm{N}_{7}-\mathrm{H}$ tautomer may be the result of intramolecular interactions between the amino group in C_{6} position and the $\mathrm{N}_{7}-\mathrm{H}$ group. Out-of-plane deformation modes of the amino group, rather than $\gamma(\mathrm{CH})$ as proposed by Sheina et al., ${ }^{\text {. }}$ may be associated with the bands at 582,566 , and $512 \mathrm{~cm}^{-1}$ in the Ar spectrum. Letellier et al. ${ }^{13}$ associated the bands at 660 and $640 \mathrm{~cm}^{-1}$ in the IR spectrum of polycrystalline adenine ${ }^{11}$ with wagging deformations of the amino group, and the band at 650 cm^{-1} with $\mathrm{C}_{8} \mathrm{H}$ wagging deformations; this assignment is contradicted by the presence of identical bands in the spectrum of N - and C_{8}-deuterated adenine. ${ }^{11}$

The three remaining calculated frequencies below $350 \mathrm{~cm}^{-1}$ corresponding to out-of-plane ring deformation modes in each tautomer are associated with vibrations of the pyrimidine and imidazole rings, as well as butterfly-type deformation of the whole

Table V. Vibrational Frequencies in $9-$ Methyladenine (in cm^{-1}) (Contributions in \%)

9-methyladenine			9-methyladenine in Ar matrix		polycrystalline9-methyladenine (Raman)		AMP (Raman)	
calc	scaled ${ }^{\text {a }}$	descriptn ${ }^{\text {b }}$	exp	descrptn	exp	descrptn	exp	descrptn
3910	3556	$\begin{aligned} & \nu\left(\mathrm{N}_{10} \mathrm{H}_{14}\right)(51) \\ & \nu\left(\mathrm{N}_{10} \mathrm{H}_{15}\right)(49) \end{aligned}$	3557	$\nu\left(\mathrm{NH}_{2}\right)$ as	3355	$\nu\left(\mathrm{NH}_{2}\right)$		
3780	3437	$\begin{aligned} & \nu\left(\mathrm{N}_{10} \mathrm{H}_{14}\right)(49) \\ & \nu\left(\mathrm{N}_{10} \mathrm{H}_{15}\right) \end{aligned}$	$\begin{aligned} & 3443 \\ & 3438 \end{aligned}$	$\nu\left(\mathrm{NH}_{2}\right) \mathrm{s}$	3280	$\nu\left(\mathrm{NH}_{2}\right)$		
					3146			
3459	3145	$\nu\left(\mathrm{C}_{8} \mathrm{H}\right)$ (99)			3104			
3407	3098	$\nu\left(\mathrm{C}_{2} \mathrm{H}\right)(100)$			$\begin{aligned} & 3091 \\ & 3031 \end{aligned}$	$\begin{aligned} & \nu\left(\mathrm{NH}_{2}\right)+\nu\left(\mathrm{C}_{8} \mathrm{H}\right)+\nu\left(\mathrm{C}_{2} \mathrm{H}\right) \\ & \nu\left(\mathrm{NH}_{2}\right)+\nu\left(\mathrm{C}_{8} \mathrm{H}\right)+\nu\left(\mathrm{C}_{2} \mathrm{H}\right) \end{aligned}$		
3301	3002	$\nu\left(\mathrm{CH}_{3}\right)(100)$			2986	$\nu\left(\mathrm{CH}_{3}\right)$		
3291	2992	$\nu\left(\mathrm{CH}_{3}\right)(100)$			2956	$\nu\left(\mathrm{CH}_{3}\right)$		
3223	2931	$\nu\left(\mathrm{CH}_{3}\right)(100)$			$\begin{aligned} & 2917 \\ & 2808 \end{aligned}$	$\nu\left(\mathrm{CH}_{3}\right)$		
				$\delta\left(\mathrm{NH}_{2}\right)$ as				
1803	1639	$\delta\left(\mathrm{NH}_{2}\right)(91)$	$\begin{aligned} & 1636 \\ & 1632 \end{aligned}$		1680	$\delta\left(\mathrm{NH}_{2}\right)$		
			1628 1622	$\nu(\mathrm{r})+\delta\left(\mathrm{NH}_{2}\right) \mathrm{s}$				
1749	1590	$\nu\left(\mathrm{N}_{9} \mathrm{C}_{11}\right)(37)$	$\begin{aligned} & 1615 \\ & 1610 \end{aligned}$	$\nu(\mathrm{r})+\delta\left(\mathrm{NH}_{2}\right)$	$\begin{aligned} & 1600 \\ & 1580 \end{aligned}$	$\nu(\mathrm{r})+\delta\left(\mathrm{NH}_{2}\right)$	1580	$\nu(\mathrm{r})+\delta(\mathrm{r})$
1725	1568	$\begin{aligned} & \nu\left(\mathrm{C}_{4} \mathrm{C}_{5}\right)(23) \\ & \nu\left(\mathrm{C}_{5} \mathrm{C}_{6}\right)(21) \end{aligned}$	1596	$\nu(\mathrm{r})$	1573	$\nu(\mathrm{r})+\delta(\mathrm{r})$		
1680	1528	$\delta\left(\mathrm{CH}_{3}\right)(82)$	1511		1526			
1662	1512	$\begin{aligned} & \nu\left(\mathrm{C}_{5} \mathrm{~N}_{7}\right)(14) \\ & \beta\left(\mathrm{C}_{8} \mathrm{H}\right)(13) \\ & \delta\left(\mathrm{CH}_{3}\right)(25) \end{aligned}$	1483	$\nu(\mathrm{r})+\beta(\mathrm{CH})$	1517		1508	$\nu(\mathrm{r})+\beta\left(\mathrm{C}_{8} \mathrm{H}\right)$
1654	1504	$\delta\left(\mathrm{CH}_{3}\right)$ (92)	1476	$\nu(\mathrm{r})+\beta(\mathrm{CH})$	1489	$\beta(\mathrm{CH})+\nu(\mathrm{r})$		
1621	1474	$\begin{aligned} & v\left(\mathrm{C}_{6} \mathrm{~N}_{10}\right)(16) \\ & \nu\left(\mathrm{N}_{1} \mathrm{C}_{2}\right)(15) \\ & \beta\left(\mathrm{C}_{2} \mathrm{H}\right)(31) \\ & \delta\left(\mathrm{CH}_{3}\right)(17) \end{aligned}$	1467		1470	$\beta(\mathrm{CH})+\nu(\mathrm{r})$	1485	$\nu(\mathrm{r})+\beta\left(\mathrm{C}_{2} \mathrm{H}\right)$
1608	1463	$\begin{aligned} & \nu\left(\mathrm{C}_{3} \mathrm{~N}_{7}\right)(26) \\ & \delta\left(\mathrm{CH}_{3}\right)(46) \end{aligned}$	$\begin{aligned} & 1449 \\ & 1443 \end{aligned}$	$\delta\left(\mathrm{CH}_{3}\right)$	1442	$\delta\left(\mathrm{CH}_{3}\right)$ as		
			1435	$\delta\left(\mathrm{CH}_{3}\right)$				
1555	1414	$\begin{aligned} & \nu\left(\mathrm{C}_{5} \mathrm{C}_{6}\right)(13) \\ & \nu\left(\mathrm{C}_{5} \mathrm{~N}_{7}\right)(27) \\ & \nu\left(\mathrm{C}_{8} \mathrm{~N}_{9}\right)(19) \end{aligned}$	$\begin{aligned} & 1425 \\ & 1411 \end{aligned}$	$\begin{aligned} & \nu(\mathrm{r})+\beta(\mathrm{CH}) \\ & \nu(\mathrm{r})+\beta(\mathrm{CH}) \end{aligned}$	1414	$\delta(\mathrm{r})$	1422	$\nu(\mathrm{r})+\nu\left(\mathrm{C}_{6} \mathrm{~N}_{10}\right)+\beta\left(\mathrm{C}_{8} \mathrm{H}\right)$
1499	1363	$\begin{aligned} & \nu\left(\mathrm{C}_{6} \mathrm{H}_{10}\right)(13) \\ & \nu\left(\mathrm{C}_{8} \mathrm{~N}_{9}\right)(11) \\ & \beta\left(\mathrm{C}_{2} \mathrm{H}\right)(41) \end{aligned}$	$\begin{aligned} & 1370 \\ & 1358 \\ & 1344 \end{aligned}$	$\begin{aligned} & \nu(\mathrm{r}) \\ & \delta\left(\mathrm{CH}_{3}\right) \end{aligned}$	1373	$\nu(\mathrm{r})$	1377	$\nu(\mathrm{r})+\delta(\mathrm{r})$
1450	1319	$\begin{aligned} & \nu\left(\mathrm{C}_{2} \mathrm{~N}_{3}\right)(11) \\ & \nu\left(\mathrm{N}_{7} \mathrm{C}_{8}\right)(22) \\ & \delta\left(\mathrm{CH}_{3}\right)(14) \end{aligned}$	$\begin{aligned} & 1328 \\ & 1325 \end{aligned}$	$\nu(\mathrm{r})$	$\begin{aligned} & 1349 \\ & 1343 \end{aligned}$	$\nu(r)+\beta\left(\mathrm{C}_{8} \mathrm{H}\right)$	1337	$\nu(\mathrm{r})+\beta\left(\mathrm{C}_{2} \mathrm{H}\right)$
1431	1301	$\begin{aligned} & \nu\left(\mathrm{C}_{5} \mathrm{C}_{6}\right)(12) \\ & \nu\left(\mathrm{C}_{2} \mathrm{~N}_{3}\right)(22) \\ & \nu\left(\mathrm{N}_{1} \mathrm{C}_{6}\right)(10) \\ & \beta\left(\mathrm{C}_{8} \mathrm{H}\right)(15) \end{aligned}$	1295	$\nu(\mathrm{CH})+\nu(\mathrm{r})$	$\begin{aligned} & 1328 \\ & 1308 \end{aligned}$	$\begin{aligned} & \delta(\mathrm{r}) \\ & \nu(\mathrm{r})+\beta(\mathrm{CH}) \end{aligned}$	1308	$\beta\left(\mathrm{C}_{2} \mathrm{H}\right)+\nu(\mathrm{r})$
1389	1263	$\begin{aligned} & \nu\left(\mathrm{N}_{3} \mathrm{C}_{4}\right)(29) \\ & \delta\left(\mathrm{C}_{8} \mathrm{H}\right)(34) \end{aligned}$	1254	$\beta(\mathrm{CH})$	1256	$\delta(\mathrm{r})+\nu(\mathrm{r})+\beta\left(\mathrm{C}_{2} \mathrm{H}\right)$		
1366	1242	$\begin{aligned} & \mathrm{r}\left(\mathrm{NH}_{2}\right)(14) \\ & \delta\left(\mathrm{CH}_{3}\right)(15) \end{aligned}$	1237	$\nu\left(\mathrm{N}-\mathrm{CH}_{3}\right)$			1251	$\mathrm{r}\left(\mathrm{NH}_{2}\right)+\nu(\mathrm{r})+\nu\left(\mathrm{N}-\mathrm{CH}_{3}\right)$
1314	1195	$\begin{aligned} & \nu\left(\mathrm{C}_{5} \mathrm{C}_{6}\right)(11) \\ & \nu\left(\mathrm{N}_{3} \mathrm{C}_{4}\right)(23) \\ & \nu\left(\mathrm{C}_{2} \mathrm{~N}_{3}\right)(13) \\ & \nu\left(\mathrm{N}_{1} \mathrm{C}_{2}\right)(10) \\ & \beta\left(\mathrm{C}_{8} \mathrm{H}\right)(14) \\ & \mathrm{r}\left(\mathrm{NH}_{2}\right)(11) \end{aligned}$	1234	$\nu\left(\mathrm{C}-\mathrm{NH}_{2}\right)$	1230	$\beta\left(\mathrm{C}_{8} \mathrm{H}\right)+\nu(\mathrm{r})$	1218	$\beta\left(\mathrm{C}_{8} \mathrm{H}\right)+\nu(\mathrm{r})$
1294	1177	$\begin{aligned} & \nu\left(\mathrm{C}_{4} \mathrm{C}_{5}\right)(13) \\ & \nu\left(\mathrm{C}_{2} \mathrm{~N}_{3}\right)(16) \\ & \nu\left(\mathrm{N}_{1} \mathrm{C}_{6}\right)(25) \end{aligned}$			1195		1175	$\nu(\mathrm{r})+\nu\left(\mathrm{C}_{6} \mathrm{~N}_{10}\right)$
$\begin{aligned} & 1271 \\ & 1148 \end{aligned}$	$\begin{aligned} & 1156 \\ & 1043 \end{aligned}$	$\delta\left(\mathrm{CH}_{3}\right)(90)$ $\nu\left(\mathrm{C}_{2} \mathrm{~N}_{3}\right)(11)$						
1148	1043	$\begin{aligned} & \nu\left(\mathrm{C}_{2} \mathrm{~N}_{3}\right)(11) \\ & \mathrm{r}\left(\mathrm{NH}_{2}\right)(12) \\ & \delta\left(\mathrm{r}_{1}\right)(13) \end{aligned}$			1085	$\nu(\mathrm{r})+\nu\left(\mathrm{N}-\mathrm{CH}_{3}\right)$		
1133	1031	$\begin{aligned} & \nu\left(\mathrm{N}_{7} \mathrm{C}_{8}\right)(31) \\ & \delta\left(\mathrm{r}_{4}\right)(25) \\ & \delta\left(\mathrm{CH}_{3}\right)(31) \end{aligned}$	1044	$\beta(\mathrm{CH})$	1047	$\delta\left(\mathrm{CH}_{3}\right)$		
1133	1030	$\gamma\left(\mathrm{C}_{2} \mathrm{H}\right)(100)$			950			
1071	974	$\begin{aligned} & \nu\left(\mathrm{C}_{6} \mathrm{~N}_{10}\right)(12) \\ & \nu\left(\mathrm{N}_{1} \mathrm{C}_{2}\right)(37) \\ & \mathrm{r}\left(\mathrm{NH}_{2}\right)(24) \end{aligned}$	944	$\nu(\mathrm{r})+\delta(\mathrm{r})$	1019	$\mathrm{r}\left(\mathrm{NH}_{2}\right)+\delta\left(\mathrm{CH}_{3}\right)$		
$\begin{array}{r} 1029 \\ 986 \end{array}$	936 897	$\begin{aligned} & \gamma\left(\mathrm{C}_{8} \mathrm{H}\right) \\ & \gamma\left(\mathrm{C}_{8} \mathrm{H}\right)(18) \end{aligned}$			905			
986	897	$\begin{aligned} & \gamma\left(\mathrm{C}_{8} \mathrm{H}\right)(18) \\ & \gamma\left(\mathrm{C}_{6} \mathrm{~N}_{10}\right)(16) \\ & \chi\left(\mathrm{r}_{1}\right)(42) \\ & \chi\left(\mathrm{r}_{4}\right)(21) \end{aligned}$	894	$\gamma(\mathrm{CH})$				

Table V (Continued)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{9-methyladenine} \& \multicolumn{2}{|l|}{9-methyladenine in Ar matrix} \& \multicolumn{2}{|r|}{polycrystalline
9-methyladenine (Raman)} \& \multicolumn{2}{|r|}{AMP (Raman)}

\hline calc \& scaled ${ }^{\text {a }}$ \& descriptn ${ }^{\text {b }}$ \& exp \& descrptn \& exp \& descrptn \& exp \& descrptn

\hline 969 \& 881 \& $$
\begin{aligned}
& \nu\left(\mathrm{N}_{1} \mathrm{C}_{6}\right)(11) \\
& \delta\left(\mathrm{r}_{1}\right)(35) \\
& \delta\left(\mathrm{r}_{3}\right)(15)
\end{aligned}
$$ \& 843 \& $\delta(\mathrm{r})$ \& 841 \& \& 912 \& $\delta(\mathrm{r})+p(\mathrm{r})$

\hline 829 \& 754 \& $$
\begin{aligned}
& \gamma\left(\mathrm{C}_{6} \mathrm{~N}_{10}\right) \\
& \chi\left(\mathrm{r}_{5}\right)(17) \\
& \chi\left(\mathrm{r}_{6}\right)(14)
\end{aligned}
$$ \& 800 \& $\delta(\mathrm{r})$ \& 799 \& $\gamma(\mathrm{CH})$ \& \&

\hline 801 \& 729 \& $$
\begin{aligned}
& \nu\left(\mathrm{N}_{7} \mathrm{C}_{8}\right)(10) \\
& \nu\left(\mathrm{C}_{4} \mathrm{~N}_{9}\right)(27) \\
& \delta\left(\mathrm{r}_{3}\right)(26) \\
& \delta\left(\mathrm{r}_{4}\right)(22)
\end{aligned}
$$ \& \& \& 744 \& \& 727 \& $\delta\left(\mathrm{CH}_{3}\right)+\nu(\mathrm{r})$

\hline 770 \& 700 \& $$
\begin{aligned}
& \nu\left(\mathrm{C}_{4} \mathrm{C}_{5}\right)(26) \\
& \nu\left(\mathrm{N}_{1} \mathrm{C}_{6}\right)(11)
\end{aligned}
$$ \& 681
645 \& $$
\delta(r)
$$ \& 718 \& $\delta \mathrm{r}$ \& \&

\hline 751 \& 683 \& $$
\begin{aligned}
& \chi\left(r_{4}\right)(11) \\
& \chi\left(r_{5}\right)(70)
\end{aligned}
$$ \& \& \& \& \& \&

\hline 644 \& 585

568 \& $$
\begin{array}{ll}
\chi\left(r_{1}\right) & (31) \\
\chi\left(r_{2}\right) & (15) \\
\chi\left(r_{3}\right) & (24) \\
\chi\left(r_{4}\right) & (10) \\
\chi\left(r_{5}\right) & (13)
\end{array}
$$ \& \& \& \& \& \&

\hline 624 \& 568 \& $$
\begin{aligned}
& \nu\left(\mathrm{N}_{9} \mathrm{C}_{11}\right)(16) \\
& \delta\left(\mathrm{C}_{6} \mathrm{~N}_{10}\right)(17) \\
& \delta\left(\mathrm{r}_{5}\right)(31)
\end{aligned}
$$ \& \& \& 606 \& $\delta(\mathrm{r})+\delta\left(\mathrm{CH}_{3}\right)+\beta\left(\mathrm{C}_{6} \mathrm{~N}_{10}\right)$ \& 570 \& $\beta\left(\mathrm{C}_{6} \mathrm{~N}_{10}\right)+\delta(\mathrm{r})$

\hline 582 \& 529 \& $$
\begin{aligned}
& \mathrm{t}\left(\mathrm{NH}_{2}\right)(19) \\
& \mathrm{w}\left(\mathrm{NH}_{2}\right)(73)
\end{aligned}
$$ \& 581 \& $\mathrm{w}\left(\mathrm{NH}_{2}\right)$ \& 562 \& \& \&

\hline 581
580 \& 529

528 \& $$
\begin{aligned}
& \nu\left(\mathrm{N}_{1} \mathrm{C}_{2}\right)(11) \\
& \delta\left(\mathrm{r}_{2}\right)(67)
\end{aligned}
$$ \& \& \& 542

530 \& $\delta(\mathrm{r})$
$\delta(\mathrm{r})$ \& 535 \& $\delta(\mathrm{r})+\nu\left(\mathrm{C}_{6} \mathrm{~N}_{10}\right)$

\hline 580
573 \& 528

522 \& $$
\begin{aligned}
& \nu\left(\mathrm{C}_{8} \mathrm{~N}_{9}\right)(11) \\
& \nu\left(\mathrm{C}_{4} \mathrm{~N}_{9}\right)(15) \\
& \beta\left(\mathrm{N}_{9} \mathrm{C}_{11}\right)(13) \\
& \delta\left(\mathrm{r}_{3}\right)(30)
\end{aligned}
$$ \& \& \& 530 \& $\delta(\mathrm{r})$ \& \&

\hline 573
360 \& 522

327 \& $$
\begin{aligned}
& \mathrm{t}\left(\mathrm{NH}_{2}\right)(66) \\
& \mathrm{w}\left(\mathrm{NH}_{2}\right)(25)
\end{aligned}
$$ \& 575 \& $w\left(\mathrm{NH}_{2}\right)$ \& \& \& \&

\hline 360 \& 327 \& $$
\begin{aligned}
& \gamma\left(N_{9} C_{11}\right)(11) \\
& \chi\left(r_{2}\right)(14) \\
& \chi\left(r_{3}\right)(45) \\
& \chi\left(r_{4}\right)(19)
\end{aligned}
$$ \& \& \& 355 \& \& 385 \& \[

\beta\left(\mathrm{C}_{6} \mathrm{~N}_{10}\right)+\delta\left(\mathrm{CH}_{3}\right)
\]

\hline 335 \& 305 \& $$
\begin{aligned}
& \beta\left(\mathrm{C}_{6} \mathrm{~N}_{10}\right) \\
& \beta\left(\mathrm{N}_{9} \mathrm{C}_{11}\right)
\end{aligned}
$$ \& \& \& 312 \& \& 325 \& $\beta\left(\mathrm{C}_{6} \mathrm{~N}_{10}\right)+\delta\left(\mathrm{CH}_{3}\right)+\delta(\mathrm{r})+\nu(\mathrm{r})$

\hline 297 \& 270 \& $$
\begin{aligned}
& \gamma\left(\mathrm{C}_{6} \mathrm{~N}_{10}\right)(12) \\
& \gamma\left(\mathrm{N}_{9} \mathrm{C}_{11}\right)(29) \\
& \chi\left(\mathrm{r}_{6}\right)(43)
\end{aligned}
$$ \& \& \& 245 \& \& \&

\hline 229 \& 208 \& $$
\begin{aligned}
& \beta\left(\mathrm{C}_{6} \mathrm{~N}_{10}\right)(14) \\
& \beta\left(\mathrm{N}_{9} \mathrm{C}_{11}\right)(40) \\
& \delta\left(\mathrm{r}_{3}\right)(17)
\end{aligned}
$$ \& \& \& 205 \& \& \&

\hline 227 \& 206 \& $$
\begin{aligned}
& \gamma\left(N_{9} C_{11}\right)(14) \\
& \chi\left(r_{2}\right)(57) \\
& \chi\left(r_{6}\right)(22)
\end{aligned}
$$ \& \& \& \& \& \&

\hline 131 \& 119 \& $$
\begin{aligned}
& \gamma\left(\mathrm{N}_{9} \mathrm{C}_{11}\right)(40) \\
& \chi\left(\mathrm{r}_{3}\right)(15) \\
& \chi\left(\mathrm{r}_{4}\right)(14)
\end{aligned}
$$ \& \& \& \[

$$
\begin{array}{r}
155 \\
130 \\
113 \\
90 \\
64
\end{array}
$$
\] \& \& \&

\hline -79 \& <100 \& $\mathrm{t}\left(\mathrm{CH}_{3}\right)(100)$ \& \& \& 49
38 \& \& \&

\hline
\end{tabular}

${ }^{a}$ The scaling factor is $0.91 .{ }^{b}$ Contributions greater than 10% are given.
molecule. These vibrations are not observed in the Ar spectrum. The band at $240 \mathrm{~cm}^{-1}$ in the Raman spectrum may be associated with the butterfly ring deformation mode in $\mathrm{N}_{9}-\mathrm{H}$ adenine.

The calculated vibrational spectra of the $\mathrm{N}_{9}-\mathrm{H}$ and $\mathrm{N}_{7}-\mathrm{H}$ tautomeric forms of adenine presented here have enabled us to check band assignments in the experimental spectra of adenine in the argon matrix and in the crystal and to propose several new assignments. Comparison of the Raman spectrum of polycrystalline adenine ${ }^{11}$ with the spectra calculated for the two tautomers examined in this work shows that only the $\mathrm{N}_{9}-\mathrm{H}$ form is detected in the crystal, in agreement with X-ray data for single crystals of adenine. ${ }^{33}$

The interpretation of the spectrum of adenine in the low-temperature argon matrix is more complex. The energy difference between the two tautomers calculated here $\left(\Delta E_{0}=\Delta E^{\mathrm{SCF}}+\Delta E_{0}\right.$ vib $=10.6 \mathrm{kcal} \mathrm{mol}^{-1}$) suggests that the $\mathrm{N}_{7}-\mathrm{H}$ tautomer should not
be detected spectroscopically. On the other hand, as found above, the Ar matrix spectrum of adenine is best analyzed when the $\mathrm{N}_{9}-\mathrm{H}$ and $\mathrm{N}_{7}-\mathrm{H}$ tautomers are both included. The experimental Ar spectrum contains many bands that are close to frequencies calculated for the $\mathrm{N}_{7}-\mathrm{H}$ tautomer in all parts of the spectrum. In the spectra of adenine in argon, neon, and nitrogen matrices measured by Nowak et al..10 in the $3600-3400-\mathrm{cm}^{-1}$ region corresponding to NH stretching vibrations, two bands assigned to $\nu(\mathrm{NH})$ are observed in the Ar and N_{2} spectra (at 3498 and 3489 cm^{-1}, and 3486 and $3477 \mathrm{~cm}^{-1}$, respectively), and only one band in the Ne spectrum (at $3503 \mathrm{~cm}^{-1}$). Nowak et al. ${ }^{10}$ argued that a change of environment from argon to neon should not affect the tautomeric distribution in adenine and that the band splitting in the Ar spectrum is a "matrix effect". However, the influence of the trapping medium on the tautomeric equilibrium and spectrum of adenine is not clear. ${ }^{49}$ Although it might be expected

Table VI. Vibrational Frequencies in Adenine- d_{3} (in cm^{-1}) (Contributions in \%)

N_{9}-D adenine- d_{3}			N_{7}-D adenine- d_{3}			adenine- d_{3} in Ar matrix		polycrystalline adenine- d_{3} (Raman)	
calc	scaled ${ }^{\text {a }}$	descrptn ${ }^{\text {b }}$	calc	scaled ${ }^{\text {a }}$	descrptn ${ }^{\text {b }}$	exp	descrptn	exp	descrptn
3468	3153	$\nu\left(\mathrm{C}_{8} \mathrm{H}\right)$ (99)						3120	$\nu\left(\mathrm{C}_{8} \mathrm{H}\right)$
			3461	3147	$\nu\left(\mathrm{C}_{8} \mathrm{H}\right)(99)$				
			3415	3105	$\nu\left(\mathrm{C}_{2} \mathrm{H}\right)(99)$				
3410	3101	$\nu\left(\mathrm{C}_{2} \mathrm{H}\right)(99)$							
						2679 sh			
			2905	2641	$\nu\left(\mathrm{N}_{10} \mathrm{D}_{14}\right)(42)$	2672	$\nu\left(\mathrm{ND}_{2}\right)$ as		
					$\nu\left(\mathrm{N}_{10} \mathrm{D}_{15}\right)(57)$	2667	$\nu\left(\mathrm{ND}_{2}\right)$ as		
2898	2635	$\nu\left(\mathrm{N}_{10} \mathrm{D}_{14}\right)(50)$				2605	$\nu(\mathrm{ND})$		
		$\nu\left(\mathrm{N}_{10} \mathrm{D}_{15}\right)(50)$				2603 sh			
			2837	2580	$\nu\left(\mathrm{N}_{7} \mathrm{D}\right)(98)$	2597	ν (ND)		
						2586 sh			
2830	2573	$\nu\left(\mathrm{N}_{9} \mathrm{D}\right)(100)$				2548			
			2738	2489	$\nu\left(\mathrm{N}_{10} \mathrm{D}_{14}\right)$ (57)	2520			
					$\nu\left(\mathrm{N}_{10} \mathrm{D}_{15}\right)(42)$	2505	$\nu\left(\mathrm{ND}_{2}\right) \mathrm{s}$		
2729	2482	$\begin{aligned} & \nu\left(\mathbf{N}_{10} \mathrm{D}_{14}\right)(49) \\ & \nu\left(\mathbf{N}_{10} \mathrm{D}_{15}\right) \end{aligned}$				2502	$\nu\left(\mathrm{ND}_{2}\right) \mathrm{s}$		
			1747	1588	$\begin{aligned} & \nu\left(\mathrm{C}_{5} \mathrm{C}_{6}\right)(37) \\ & \nu\left(\mathrm{C}_{2} \mathrm{~N}_{3}\right)(13) \end{aligned}$	1619			
1743	1585	$\nu\left(\mathrm{C}_{5} \mathrm{C}_{6}\right)(39)$				1610	$\nu(\mathrm{r})$	1610	$\nu(\mathrm{r})+\delta(\mathrm{r})$
1723	1566	$\nu\left(\mathrm{C}_{4} \mathrm{C}_{5}\right)(18)$						1568	$\nu(\mathrm{r})+\delta(\mathrm{r})$
		$\begin{aligned} & \nu\left(\mathrm{N}_{3} \mathrm{C}_{4}\right)(28) \\ & \nu\left(\mathrm{N}_{1} \mathrm{C}_{6}\right)(12) \end{aligned}$							
			1706	1551	$\nu\left(\mathrm{C}_{4} \mathrm{C}_{5}\right)(18)$				
					$\begin{aligned} & \nu\left(\mathrm{N}_{3} \mathrm{C}_{4}\right)(25) \\ & \nu\left(\mathrm{N}_{1} \mathrm{C}_{6}\right)(18) \end{aligned}$				
1639	1490	$\nu\left(\mathrm{C}_{6} \mathrm{~N}_{10}\right)(15)$				1497	$\nu(\mathrm{r})+\beta(\mathrm{ND})$	1514	$\nu(\mathrm{r})+\nu\left(\mathrm{C}_{6} \mathrm{~N}_{10}\right)$
		$\nu\left(\mathrm{N}_{7} \mathrm{C}_{8}\right)(30)$							
		$\delta_{\left(\mathrm{C}_{2} \mathrm{H}\right)}(10)$							
			1624	1476	$\nu\left(\mathrm{C}_{6} \mathrm{~N}_{10}\right)(13)$	1485	$\nu(\mathrm{r})+\beta(\mathrm{CH})$		
					$\nu\left(\mathrm{C}_{8} \mathrm{~N}_{9}\right)(12)$		$\nu(r)+\beta(C H)$		
1618	1471	$\nu\left(\mathrm{C}_{6} \mathrm{~N}_{10}\right)(10)$				1482	$\nu(\mathrm{r})+\beta(\mathrm{CH})$	1466	
	147	$\nu\left(\mathrm{C}_{2} \mathrm{~N}_{3}\right)(10)$				1482	$\nu(\mathrm{r})+\beta(\mathrm{CH})$	1466	$\nu(\mathrm{r})+\beta\left(\mathrm{C}_{2} \mathrm{H}\right)$
		$\nu\left(\mathrm{N}_{1} \mathrm{C}_{6}\right)(13)$							
		$\nu\left(\mathrm{N}_{7} \mathrm{C}_{8}\right)(24)$							
		$\beta\left(\mathrm{C}_{2} \mathrm{H}\right)$ (28)							
			1612	1466	$\nu\left(\mathrm{N}_{1} \mathrm{C}_{6}\right)(11)$	1448			
					$\nu\left(\mathrm{C}_{8} \mathrm{~N}_{9}\right)(40)$	1444			
					$\beta\left(\mathrm{C}_{2} \mathrm{H}\right)$ (15)	1442			
					$\beta\left(\mathrm{C}_{8} \mathrm{H}\right)(20)$	1438			
1544	1404					1416		1424	$\nu(\mathrm{r})+\beta\left(\mathrm{C}_{8} \mathrm{H}\right)+\nu\left(\mathrm{C}_{6} \mathrm{~N}_{10}\right)$
		$\nu\left(\mathrm{C}_{4} \mathrm{C}_{5}\right)(24)$				1414	$\nu(\mathrm{r})+\beta(\mathrm{CH})$		$\nu(r)+\beta\left(\mathrm{C}_{8} \mathrm{H}\right)+\nu\left(\mathrm{C}_{6} \mathrm{~N}_{10}\right)$
		$\nu\left(\mathrm{C}_{4} \mathrm{~N}_{9}\right)(10)$							
		$\beta\left(\mathrm{C}_{2} \mathrm{H}\right)(21)$							
		$\delta\left(\mathrm{r}_{1}\right)(11)$							
			1505	1369	$\nu\left(\mathrm{C}_{6} \mathrm{~N}_{10}\right)(24)$	1361	$\nu(\mathrm{r})$		
					$\nu\left(\mathrm{C}_{4} \mathrm{C}_{5}\right)(24)$				
					$\beta\left(\mathrm{C}_{2} \mathrm{H}\right)$ (21)				
1484	1349	$\begin{aligned} & \nu\left(\mathrm{C}_{4} \mathrm{~N}_{9}\right)(23) \\ & \beta\left(\mathrm{C}_{2} \mathrm{H}\right)(29) \end{aligned}$				1340		1372	$\nu(r)+\delta(r)$
			1471	1337	$\nu\left(\mathrm{C}_{2} \mathrm{~N}_{3}\right)(26)$	1325	$\nu(\mathrm{r})$		
					$\nu\left(\mathrm{C}_{5} \mathrm{~N}_{7}\right)(15)$	1319 sh	$\nu(\mathrm{r})$		
					$\nu\left(\mathrm{C}_{8} \mathrm{~N}_{9}\right)(10)$				
					$\beta\left(\mathrm{C}_{8} \mathrm{H}\right)(12)$				
					$\delta\left(\mathrm{r}_{1}\right)(11)$				
1432	1302	$\nu\left(\mathrm{C}_{4} \mathrm{C}_{5}\right)(10)$	1434	1304	$\nu\left(\mathrm{C}_{4} \mathrm{C}_{5}\right)(15)$	1310 sh		1333	$\nu(r)+\beta\left(\mathrm{C}_{2} \mathrm{H}\right)$
		$\nu\left(\mathrm{C}_{2} \mathrm{~N}_{3}\right)(13)$			$\nu\left(\mathrm{N}_{3} \mathrm{C}_{4}\right)(10)$			133	$\nu(\mathrm{r})+\beta\left(\mathrm{C}_{2} \mathrm{H}\right)$
		$\nu\left(\mathrm{N}_{1} \mathrm{C}_{2}\right)(28)$			$\nu\left(\mathrm{N}_{1} \mathrm{C}_{2}\right)(11)$				
					$\nu\left(\mathrm{C}_{4} \mathrm{~N}_{9}\right)(17)$				
					$\beta\left(\mathrm{C}_{2} \mathrm{H}\right)$ (13)				
			1428	1298	$\nu\left(\mathrm{N}_{7} \mathrm{C}_{8}\right)(20)$				
					$\beta\left(\mathrm{C}_{8} \mathrm{H}\right)$ (32)				
1419	1290					1290	$\beta(\mathrm{CH})+\nu(\mathrm{r})$	1305	$\delta\left(\mathrm{ND}_{2}\right)+\nu(\mathrm{r})+\beta\left(\mathrm{C}_{2} \mathrm{H}\right)$
		$\beta\left(\mathrm{C}_{8} \mathrm{H}\right)(49)$							$\delta\left(\mathrm{D}_{2}\right)+\alpha(r)+\beta\left(\mathrm{C}_{2} \mathrm{H}\right)$
						1261	$\beta(\mathrm{CH})$		
			1356	1233	$\nu\left(\mathrm{N}_{1} \mathrm{C}_{2}\right)(14)$				
					$\nu\left(\mathrm{N}_{7} \mathrm{C}_{8}\right)(21)$				
					$\beta(\mathrm{N}, \mathrm{D})(15)$				
1337	1216	$\nu\left(\mathrm{C}_{2} \mathrm{~N}_{3}\right)(25)$						1250	$\delta\left(\mathrm{ND}_{2}\right)+\beta(\mathrm{CH})$
		$\nu\left(\mathrm{N}_{1} \mathrm{C}_{2}\right)(19)$							$\beta\left(\mathrm{D}_{2}\right)+\beta(\mathrm{CH})$
		$\nu\left(\mathrm{C}_{8} \mathrm{~N}_{9}\right)(19)$							
		$\beta\left(\mathrm{N}_{9} \mathrm{D}\right)$ (11)							
1317	1198	$\delta\left(\mathrm{ND}_{2}\right)(58)$	1317	1198	$\delta\left(\mathrm{ND}_{2}\right)(71)$			1230	$\beta\left(\mathrm{C}_{8} \mathrm{H}\right)+\nu(\mathrm{r})$
		$\delta\left(\mathrm{r}_{1}\right)(10)$							
			1288	1171	$\nu\left(\mathrm{C}_{2} \mathrm{~N}_{3}\right)(22)$				
					$\nu\left(\mathrm{N}_{1} \mathrm{C}_{2}\right)(13)$				
					$\nu\left(\mathrm{N}_{1} \mathrm{C}_{6}\right)(23)$	1186	$\nu\left(\mathrm{C}-\mathrm{ND}_{2}\right)$		

Table VI (Continued)

Table VI (Continued)

N_{9}-D adenine- d_{3}			N_{7}-D adenine- d_{3}			adenine- d_{3} in Ar matrix		polycrystalline adenine- d_{3} (Raman)	
calc	scaled ${ }^{\text {a }}$	descrptn ${ }^{\text {b }}$	calc	scaled ${ }^{\text {a }}$	descrptn ${ }^{\text {b }}$	exp	descrptn	exp	descrptn
645	586	$\begin{aligned} & \hline \nu\left(\mathrm{C}_{5} \mathrm{C}_{6}\right)(30) \\ & \delta\left(\mathrm{r}_{3}\right)(19) \\ & \delta\left(\mathrm{r}_{5}\right)(18) \end{aligned}$						602	$\nu(\mathrm{r})+\beta\left(\mathrm{C}_{6} \mathrm{~N}_{10}\right)$
643	584	$\begin{aligned} & \chi\left(r_{1}\right) \\ & \chi\left(r_{2}\right) \\ & \chi(16) \\ & \chi\left(r_{3}\right) \\ & \chi\left(r_{5}\right) \end{aligned}(12), ~(12)$	640	582	$\begin{aligned} & \nu\left(\mathrm{C}_{5} \mathrm{C}_{6}\right)(28) \\ & \nu\left(\mathrm{C}_{4} \mathrm{~N}_{9}\right)(13) \\ & \delta\left(\mathrm{r}_{3}\right)(24) \\ & \delta\left(\mathrm{r}_{5}\right)(14) \end{aligned}$				
571	520	$\delta\left(\mathrm{r}_{2}\right)(70)$	569	517	$\begin{aligned} & \nu\left(\mathrm{C}_{6} \mathrm{~N}_{10}\right)(11) \\ & \delta\left(\mathrm{r}_{2}\right)(66) \end{aligned}$			560	$\delta(\mathrm{r})+\nu(\mathrm{r})+\beta\left(\mathrm{C}_{6} \mathrm{~N}_{10}\right)$
542	493	$\gamma\left(\mathrm{N}_{9} \mathrm{D}\right)(89)$	528	480	$\begin{aligned} & \nu\left(\mathrm{C}_{5} \mathrm{~N}_{7}\right)(10) \\ & \beta\left(\mathrm{C}_{6} \mathrm{~N}_{10}\right) 20 \\ & \mathrm{r}\left(\mathrm{ND}_{2}\right)(12) \\ & \delta\left(\mathrm{r}_{3}\right)(19) \end{aligned}$			508	
521	474	$\begin{aligned} & \nu\left(\mathrm{C}_{4} \mathrm{~N}_{9}\right)(11) \\ & \beta\left(\mathrm{C}_{6} \mathrm{~N}_{10}\right)(21) \\ & \delta\left(\mathrm{r}_{3}\right)(21) \end{aligned}$						525	$\delta(\mathrm{r})+\nu\left(\mathrm{C}_{6} \mathrm{~N}_{10}\right)$
458	416	$\mathrm{t}\left(\mathrm{ND}_{2}\right)(84)$	$\begin{aligned} & 475 \\ & 428 \end{aligned}$	$\begin{aligned} & 432 \\ & 389 \end{aligned}$	$\begin{aligned} & \gamma\left(\mathrm{N}_{7} \mathrm{D}\right)(87) \\ & \mathrm{t}\left(\mathrm{ND}_{2}\right)(47) \\ & \mathrm{w}\left(\mathrm{ND}_{2}\right)(36) \end{aligned}$	407	$\mathrm{w}\left(\mathrm{ND}_{2}\right)$	473 (IR)	$\mathrm{w}\left(\mathrm{ND}_{2}\right)$
$\begin{aligned} & 419 \\ & 345 \end{aligned}$	$\begin{aligned} & 381 \\ & 314 \end{aligned}$	$\begin{aligned} & \mathrm{w}\left(\mathrm{ND}_{2}\right)(95) \\ & \gamma\left(\mathrm{C}_{6} \mathrm{~N}_{10}\right)(11) \\ & \chi\left(\mathrm{r}_{2}\right)(11) \\ & \chi\left(\mathrm{r}_{3}\right)(39) \\ & \chi\left(\mathrm{r}_{4}\right)(24) \\ & \chi\left(\mathrm{r}_{6}\right)(10) \end{aligned}$	342	311	$\begin{aligned} & \gamma\left(C_{6} N_{10}\right)(14) \\ & \chi\left(r_{2}\right)(11) \\ & \chi\left(r_{3}\right)(33) \\ & \chi\left(r_{4}\right)(22) \\ & \chi\left(r_{6}\right)(10) \end{aligned}$				
			284 283	258 257	$\begin{aligned} & \mathrm{t}\left(\mathrm{ND}_{2}\right)(23) \\ & \mathrm{w}\left(\mathrm{ND}_{2}\right)(29) \\ & \chi\left(\mathrm{r}_{2}\right)(25) \\ & \chi\left(\mathrm{r}_{6}\right)(20) \\ & \beta\left(\mathrm{C}_{6} \mathrm{~N}_{10}\right)(55) \\ & \delta\left(\mathrm{r}_{3}\right)(12) \end{aligned}$				
265	241	$\begin{aligned} & \beta\left(\mathrm{C}_{6} \mathrm{~N}_{10}\right) \\ & \delta\left(\mathrm{r}_{3}\right)(13) \end{aligned}$						302	$\beta\left(\mathrm{C}_{6} \mathrm{~N}_{10}\right)+\delta(\mathrm{r})$
246	224	$\begin{array}{ll} \chi\left(r_{2}\right) & (20) \\ \chi\left(r_{6}\right) & (64) \end{array}$	233	212	$\begin{aligned} & \mathrm{w}\left(\mathrm{ND}_{2}\right)(25) \\ & \chi\left(\mathrm{r}_{3}\right)(12) \\ & \chi\left(\mathrm{r}_{6}\right)(42) \end{aligned}$			238	
192	175	$\begin{aligned} & \gamma\left(C_{6} N_{10}\right)(20) \\ & \chi\left(r_{1}\right)(15) \\ & \chi\left(r_{2}\right)(43) \\ & \chi\left(r_{3}\right)(15) \end{aligned}$	162	148	$\begin{aligned} & \mathrm{t}\left(\mathrm{ND}_{2}\right)(15) \\ & \chi\left(\mathrm{r}_{2}\right)(36) \\ & \chi\left(\mathrm{r}_{3}\right)(11) \\ & \hline \end{aligned}$				

${ }^{a}$ The scaling factor is 0.91 . ${ }^{b}$ Contributions greater than 10% are given.
that in nitrogen matrices-in contrast to argon and neonintermolecular interactions of the trapped system with N_{2} molecules might influence the tautomeric equilibrium, ${ }^{7,48}$ the spectra of adenine isolated in Ar and N_{2} matrices are similar in the region corresponding to NH stretching vibrations and are different from the spectrum in the Ne matrix. It might also be argued that "matrix size effects" could occur; the smaller the particles of the trapping medium, the less effect they should have on the behavior of the trapped system. From the analysis of the $\nu(\mathrm{NH})$ region in adenine spectra in the three matrices used by Nowak et al. ${ }^{10}$ it is evident that the influence of the trapping medium is not systematic and that the simple arguments presented above do not explain the observed spectra. The agreement between the 4-21G frequencies for the $\mathrm{N}_{9}-\mathrm{H}$ and $\mathrm{N}_{7}-\mathrm{H}$ tautomers with the bands in the argon matrix spectrum in the entire spectral range, as well as the correspondence between the calculated tautomeric frequency differences and the experimental band splittings, supports the existence of both tautomers in the low-temperature matrix. The calculated energy difference between the two tautomers suggests that only the $\mathrm{N}_{9}-\mathrm{H}$ tautomer should be detected, although no free
(49) Barnes, A. J. In Molecular Interactions; Ratajczak, H., OrvilleThomas, W. J., Eds.; Wiley: New York, 1980; Vol. 1, p 278.
energy data from the gas phase are available and the reliability of the $a b$ initio energy calculations at the 4-2IG level is not established. Further experimental and theoretical investigations are needed to elucidate this discrepancy.

The rms deviation of the frequencies observed in the Raman spectrum of polycrystalline adenine from the bands assigned to the $\mathrm{N}_{9}-\mathrm{H}$ tautomer in the Ar matrix spectrum is 4% in the entire spectral range; it is 1% for frequencies higher than $1200 \mathrm{~cm}^{-1}$. The influence of intermolecular interactions in the crystal on intramolecular vibrations cannot be readily analyzed from the comparison of the two spectra, as only 17 common bands out of the expected 39 lines for adenine are observed in both spectra; most of the bands assigned to the same normal modes in the two spectra occur above $1000 \mathrm{~cm}^{-1}$. Intermolecular interactions in the crystal appear to be significant for bending modes of the amino group and ring bending modes. It is expected that intermolecular interactions will increase the frequencies of out-of-plane vibrations, ${ }^{50}$ but a detailed analysis could not be performed, as only one band assigned to the same normal mode $[\gamma(\mathrm{CH})]$ is observed in both spectra.
(50) Truebloud. K. N.: Dunitz, J. D. Acta Crystallogr. 1983, B39. 120.
3.2.2 9 -Methyladenine. The results obtained for 9 -methyladenine ($9-\mathrm{MA}$) are presented in Table V and compared with the Ar spectrum of $9-\mathrm{MA}^{9}$ and the Raman spectra of polycrystalline $9-\mathrm{MA}^{12}$ and 5^{\prime}-AMP in $\mathrm{H}_{2} \mathrm{O}$. ${ }^{14,15.51}$
$3600-3000-\mathrm{cm}^{-1}$ Range. In this region, $\nu\left(\mathrm{NH}_{2}\right)$ and $\nu(\mathrm{CH})$ stretching modes are observed. The bands at 3557, 3443, and $3438 \mathrm{~cm}^{-1}$ in the Ar matrix spectrum are assigned to antisymmetric and symmetric stretching vibrations of the $-\mathrm{NH}_{2}$ group. The bands assigned to $\nu\left(\mathrm{NH}_{2}\right)$ modes in the Raman spectrum of crystalline 9-MA are observed at 3355 and $3280 \mathrm{~cm}^{-1}$, i.e., about $200 \mathrm{~cm}^{-1}$ below the $4-21 \mathrm{G}$ and argon matrix frequencies; this frequency shift may be due to intermolecular interactions-both hydrogen bonds and/or planar associations with neighboring molecules. The calculated $\nu\left(\mathrm{C}_{2} \mathrm{H}\right), \nu\left(\mathrm{C}_{8} \mathrm{H}\right)$, and $\nu\left(\mathrm{CH}_{3}\right)$ stretching deformations are not observed in the Ar spectrum of 9-MA and Raman spectrum of AMP. The bands in the $3150-2800-\mathrm{cm}^{-1}$ region of the Raman spectrum of 9-MA are associated with these vibrations.
$2000-1620-\mathrm{cm}^{-1}$ Range. The bands at 1628 and $1622 \mathrm{~cm}^{-1}$ in the Ar spectrum and at $1680 \mathrm{~cm}^{-1}$ in the Raman spectrum of 9-MA may be assigned to the scissoring mode of the NH_{2} group.
$1620-1150-\mathrm{cm}^{-1}$ Range. The experimental bands in this region are assigned to stretching ring deformations, and $\mathrm{C}-\mathrm{H}$ and NH_{2} bending vibrations. Our calculations suggest that the bands at 1615 and $1610 \mathrm{~cm}^{-1}$ correspond to $\nu(\mathrm{r})$ modes, rather than $\mathrm{r}\left(\mathrm{NH}_{2}\right)$ modes, as proposed by Sheina et al. ${ }^{9}$ our assignment is supported by the presence of similar bands in the experimental spectra of deuterated adenine and its 9 -methyl derivative (see sections 3.2.4 and 3.2.5). The frequencies for rocking deformation modes of the $-\mathrm{NH}_{2}$ group are calculated to lie below $1250 \mathrm{~cm}^{-1}$. Savoie et al. ${ }^{12}$ assigned the band at $1573 \mathrm{~cm}^{-1}$ in the Raman spectrum of $9-\mathrm{MA}$ to ring stretching and bending modes; the calculated normal mode at $1568 \mathrm{~cm}^{-1}$ has no ring bending character. Ring bending deformations are predicted to contribute to vibrations below $1100 \mathrm{~cm}^{-1}$. For bands below $1550 \mathrm{~cm}^{-1}$ contributions from CH_{3} bending modes are predicted. The unassigned bands at 1526 and $1517 \mathrm{~cm}^{-1}$ in the Raman spectrum of 9-MA may be associated with bending modes of the methyl group. We assign the band at $1414 \mathrm{~cm}^{-1}$ in the Raman spectrum of $9-\mathrm{MA}$ to ring stretching modes, and not to ring bending deformations, as suggested by Savoie. ${ }^{12}$ The calculated vibration at $1363 \mathrm{~cm}^{-1}$ has a dominant $\beta\left(\mathrm{C}_{2} \mathrm{H}\right)$ character; this mode may correspond to the band at 1373 cm^{-1} in the Raman spectrum of $9-\mathrm{MA}$, associated by Savoie et al. ${ }^{12}$ with pyrimidine ring stretching deformations. The band at $1237 \mathrm{~cm}^{-1}$ in the Ar spectrum has been assigned by Sheina et al. ${ }^{9}$ to stretching deformations of the $\mathrm{N}_{9}-\mathrm{C}_{11}$ bond; our results have this band correspond to $\mathrm{r}\left(\mathrm{NH}_{2}\right)$ and $\beta\left(\mathrm{CH}_{3}\right)$ modes, the $\nu\left(\mathrm{N}_{9} \mathrm{C}_{11}\right)$ mode giving rise to a line at $1590 \mathrm{~cm}^{-1}$ associated with the experimental bands at 1615 and $1610 \mathrm{~cm}^{-1}$. The band at $1234 \mathrm{~cm}^{-1}$ in the Ar spectrum is associated with stretching deformations of the pyrimidine ring, with contributions from $\beta\left(\mathrm{C}_{8} \mathrm{H}\right)$ and $\mathrm{r}\left(\mathrm{NH}_{2}\right)$ modes. Sheina et al. ${ }^{9}$ assign this band to $\mathrm{C}_{6}-\mathrm{N}_{10}$ stretching vibrations in the amino group. The unassigned band at $1195 \mathrm{~cm}^{-1}$ in the Raman spectrum of $9-\mathrm{MA}$ is associated here with $\nu(\mathrm{r})$ modes.

1150-0 $-\mathrm{cm}^{-1}$ Range. In this region, the bands observed experimentally are associated with both in-plane and out-of-plane deformation modes. The assignments proposed here are in general agreement with those suggested by Sheina et al. ${ }^{9}$ for the Ar spectrum of methyladenine and by Majoube ${ }^{51}$ for the solution Raman spectrum of AMP. ${ }^{14.15}$ The discrepancies between 4-21G normal modes and force field assignments are described below. Sheina et al. ${ }^{9}$ have assigned the band at $894 \mathrm{~cm}^{-1}$ in the matrix spectrum to CH wagging modes; in the $4-21 \mathrm{G}$ spectrum this band is associated with out-of-plane ring bending deformations. The unassigned bands at 950 and $905 \mathrm{~cm}^{-1}$ in the Raman spectrum of 9 -MA may correspond to $\gamma(\mathrm{CH})$ vibrations, calculated at 1030 and $936 \mathrm{~cm}^{-1}$ for $\mathrm{C}_{2} \mathrm{H}$ and $\mathrm{C}_{8} \mathrm{H}$, respectively. The band at 841 cm^{-1} in the Raman spectrum of 9-MA has been assigned by Savoie et al. ${ }^{12}$ to wagging CH modes; this band may correspond to either
in-plane or out-of-plane ring bending deformations. The band at $727 \mathrm{~cm}^{-1}$ in the Raman spectrum of AMP has been associated by Majoube ${ }^{51}$ with $\mathrm{N}_{9}-\mathrm{C}_{11}$ bending deformations; here this band is assigned to ring breathing modes, in agreement with similar modes calculated for adenine (see Table IV) and force field assignments by Tsuboi et al. ${ }^{16}$ for AMP. The unassigned band at $744 \mathrm{~cm}^{-1}$ in the Raman spectrum of 9 -MA may correspond to ring breathing deformations. The band at $681 \mathrm{~cm}^{-1}$ in the Ar spectrum, assigned by Sheina et al. ${ }^{9}$ to ring bending modes, may correspond to ring stretching vibrations. The band at $530 \mathrm{~cm}^{-1}$ in the Raman spectrum of 9-MA, associated by Savoie et al. ${ }^{12}$ with ring out-of-plane deformations, may be assigned to either in-plane ring bending modes (calculated at $528 \mathrm{~cm}^{-1}$) or out-of-plane torsions of the $-\mathrm{NH}_{2}$ group ($522 \mathrm{~cm}^{-1}$). The other out-of-plane vibration of the amino group, calculated at $529 \mathrm{~cm}^{-1}$. may correspond to the unassigned band at $562 \mathrm{~cm}^{-1}$.

The bands at 385 and $325 \mathrm{~cm}^{-1}$ in the spectrum of AMP have been associated by Majoube ${ }^{51}$ with $\beta\left(\mathrm{C}_{6} \mathrm{~N}_{10}\right)$ and $\beta\left(\mathrm{N}_{9} \mathrm{R}\right)$ modes; our calculations predict these modes to give rise to lines at 305 and $208 \mathrm{~cm}^{-1}$. Bands at 355 and $312 \mathrm{~cm}^{-1}$ are also observed in the Raman spectrum of 9 -MA..12 Kyogoku et al. ${ }^{17}$ have shown that the band around $350 \mathrm{~cm}^{-1}$ in the Raman spectrum of AMP is depolarized and thus corresponds to an out-of-plane vibration. In adenine only one $\beta\left(\mathrm{C}_{6} \mathrm{~N}_{10}\right)$ mode has been calculated at 265 cm^{-1} and assigned to the band at $330 \mathrm{~cm}^{-1}$ in the Raman spectrum. Thus, we propose the assignment of the bands at 312 and $325 \mathrm{~cm}^{-1}$ in the Raman spectra of 9-MA and AMP, respectively, to β ($\mathrm{C}_{6} \mathrm{~N}_{10}$) and $\beta\left(\mathrm{N}_{9} \mathrm{R}\right)$ modes, and bands at 355 and $385 \mathrm{~cm}^{-1}$ to out-of-plane skeletal modes (calculated at $327 \mathrm{~cm}^{-1}$).

For the lowest frequency vibration in 9-MA, a negative eigenvalue was obtained with the molecular geometry shown in Table V during evaluation of the second energy derivatives in the $4-21 \mathrm{G}$ calculations. This normal mode corresponds to the torsion of the methyl group. The energy hypersurface along the coordinate describing the torsion of the methyl group has a rather wide and flat well in the vicinity of the minimum energy conformation: rotation of the methyl group about the $\mathrm{N}_{9}-\mathrm{C}_{11}$ bond by 10° lowered the total energy by $5 \mathrm{cal} \mathrm{mol}^{-1}$. It is expected that a minor change in the torsional coordinate would yield a real vibrational frequency without significantly affecting the energy of the system. Such an adjustment of the 4-21G geometry presented in Table I was not performed, as recalculating the spectrum of 9 methyladenine with a skewed methyl group would have affected only one vibrational mode and been very time-consuming. Harmonic force constants for the libration of methyl groups in different systems cover a broad range. ${ }^{50.52 .53}$ For 1-methyluracil, the frequency for twisting of the methyl group has been calculated at $75 \mathrm{~cm}^{-1} .2^{2}$ The $-\mathrm{CH}_{3}$ torsional mode in 9 -methyladenine is also expected below $100 \mathrm{~cm}^{-1}$.

Overall, a good agreement between the 4-21G frequencies and the values observed in the argon matrix has been obtained for 9 -methyladenine. The rms difference between the calculated and experimental frequencies is 3%.
3.2.3. Isotopic Spectra. As a test of the accuracy of assignments of experimental bands to vibrational modes in adenine and 9-MA the spectra of N -deuterated derivatives of adenine and 9-MA have been calculated with the 4-2IG force constants. The geometry and force field obtained for the undeuterated systems were used in these calculations; the 4-21G force constants will be published elsewhere. ${ }^{38}$ The results for adenine- d_{3} are shown in Table VI, together with experimental Ar matrix and Raman spectra. Table V1I presents the results for $9-\mathrm{MA}-d_{2}$, as well as the Ar matrix spectrum of $9-$ MA- d_{2} and the Raman spectrum of AMP- d_{2}
3.2.4. Adenine- d_{3}. The vibrational spectra calculated for N_{9} and N_{7} tautomers of N -deuterated adenine are compared with Ar matrix ${ }^{9}$ and Raman ${ }^{11}$ spectra in Table VI. The bands from 2672 to $2502 \mathrm{~cm}^{-1}$ in the matrix spectrum are associated with antisymmetric and symmetric stretching deformations of the $-\mathrm{ND}_{2}$

[^6](53) Lifson. S.: Warshel, A. J. Chem. Phys. 1968. 49, 5116.

Table VII. Vibrational Frequencies in 9-Methyladenine- $d_{2}\left(\right.$ in $^{-1}{ }^{-1}$) (Contributions in \%)

9-methyladenine- d_{2}			9 -methyladenine- d_{2} in Ar matrix		AMP- d_{2} (Raman)	
calc	scaled ${ }^{\text {a }}$	descrptn ${ }^{\text {b }}$	exp	descrptn	exp	descrptn
			$\begin{aligned} & 3567 \\ & 3507 \\ & 3497 \end{aligned}$			
3459	3145	$\nu\left(\mathrm{C}_{8} \mathrm{H}\right)(100)$			3120	$\nu\left(\mathrm{C}_{8} \mathrm{H}\right)$
3407	3098	$\nu\left(\mathrm{C}_{2} \mathrm{H}\right)(100)$			3053	$\nu\left(\mathrm{C}_{2} \mathrm{H}\right)$
3301	3002	$\nu\left(\mathrm{CH}_{3}\right)(100)$				
3291	2992	$\nu\left(\mathrm{CH}_{3}\right)(100)$				
3223	2931	$\nu\left(\mathrm{CH}_{3}\right)(100)$				
			2670			
2898	2635	$\nu\left(\mathrm{N}_{10} \mathrm{D}_{14}\right)(50)$	2591			
		$\nu\left(\mathrm{N}_{10} \mathrm{D}_{15}\right)(50)$	$\begin{aligned} & 2581 \\ & 2535 \end{aligned}$			
2729	2482	$\begin{aligned} & \nu\left(\mathrm{N}_{10} \mathrm{D}_{14}\right) \\ & \nu\left(\mathrm{N}_{10} \mathrm{D}_{15}\right) \end{aligned}$	2511	$\nu\left(\mathrm{ND}_{2}\right) \mathrm{s}$		
			1629			
1744	1585	$\begin{aligned} & \nu\left(\mathrm{N}_{9} \mathrm{C}_{11}\right)(37) \\ & \nu\left(\mathrm{C}_{5} \mathrm{C}_{6}\right)(10) \end{aligned}$	$\begin{aligned} & 1620 \\ & 1615 \end{aligned}$	$\nu(\mathrm{r})$	1624	$\nu(\mathrm{r})+\delta(\mathrm{r})$
			1603			
1724	1568	$\begin{aligned} & \nu\left(\mathrm{C}_{5} \mathrm{C}_{6}\right)(14) \\ & \nu\left(\mathrm{N}_{3} \mathrm{C}_{4}\right)(26) \\ & \nu\left(\mathrm{N}_{1} \mathrm{C}_{2}\right)(10) \\ & \nu\left(\mathrm{C}_{8} \mathrm{~N}_{9}\right)(10) \end{aligned}$	1592	$\nu(\mathrm{r})$	1577	$\nu(\mathrm{r})+\delta(\mathrm{r})$
1680	1528	$\delta\left(\mathrm{CH}_{3}\right)(82)$				
1662	1511	$\begin{aligned} & \nu\left(\mathrm{C}_{5} \mathrm{~N}_{7}\right)(12) \\ & \beta\left(\mathrm{C}_{8} \mathrm{H}\right)(12) \\ & \delta\left(\mathrm{CH}_{3}\right)(21) \end{aligned}$	1497	$\nu(\mathrm{r})+\beta(\mathrm{CH})$	1520	$\nu(\mathrm{r})+\beta\left(\mathrm{C}_{8} \mathrm{H}\right)$
1654	1504	$\delta\left(\mathrm{CH}_{3}\right)(92)$	1488	$\nu(\mathrm{r})+\beta(\mathrm{ND})$		
1624	1477	$\begin{aligned} & \nu\left(\mathrm{C}_{6} \mathrm{~N}_{10}\right)(17) \\ & \nu\left(\mathrm{N}_{1} \mathrm{C}_{2}\right)(14) \\ & \beta\left(\mathrm{C}_{2} \mathrm{H}\right)(27) \\ & \delta\left(\mathrm{CH}_{3}\right)(25) \end{aligned}$	1475		1485	$\nu(\mathrm{r})+\beta\left(\mathrm{C}_{2} \mathrm{H}\right)$
1608	1462		1446	$\delta\left(\mathrm{CH}_{3}\right)$		
		$\begin{aligned} & \beta\left(\mathrm{C}_{2} \mathrm{H}\right)(10) \\ & \delta\left(\mathrm{CH}_{3}\right)(42) \end{aligned}$	1432	$\delta\left(\mathrm{CH}_{3}\right)$		
1556	1415	$\begin{aligned} & \nu\left(\mathrm{C}_{5} \mathrm{C}_{6}\right)(14) \\ & \nu\left(\mathrm{C}_{5} \mathrm{~N}_{7}\right)(25) \\ & \nu\left(\mathrm{C}_{8} \mathrm{~N}_{9}\right)(16) \end{aligned}$	$\begin{aligned} & 1416 \\ & 1410 \end{aligned}$	$\nu(\mathrm{r})+\beta(\mathrm{CH})$	1426	$\nu(\mathrm{r})+\nu\left(\mathrm{C}_{6} \mathrm{H}_{10}\right)+\beta\left(\mathrm{C}_{8} \mathrm{H}\right)$
			1375	$\nu(\mathrm{r})$		
1503	1367	$\begin{aligned} & \nu\left(\mathrm{C}_{6} \mathrm{~N}_{10}\right)(13) \\ & \nu\left(\mathrm{C}_{8} \mathrm{~N}_{9}\right)(14) \\ & \beta\left(\mathrm{C}_{2} \mathrm{H}\right)(36) \end{aligned}$	1369		1383	$\nu(\mathrm{r})+\delta(\mathrm{r})$
			1359	$\delta\left(\mathrm{CH}_{3}\right)$		
1456	1324	$\begin{aligned} & \nu\left(\mathrm{C}_{2} \mathrm{~N}_{3}\right)(12) \\ & \nu\left(\mathrm{N}_{7} \mathrm{C}_{8}\right)(20) \\ & \delta\left(\mathrm{CH}_{3}\right)(14) \end{aligned}$	1342 1326	$\nu(\mathrm{r})$	1340	$\nu(\mathrm{r})+\beta\left(\mathrm{C}_{2} \mathrm{H}\right)$
			1312			
1424	1295	$\begin{aligned} & \nu\left(\mathrm{C}_{5} \mathrm{C}_{6}\right)(14) \\ & \nu\left(\mathrm{C}_{2} \mathrm{~N}_{3}\right)(18) \\ & \nu\left(\mathrm{N}_{1} \mathrm{C}_{6}\right)(14) \\ & \beta\left(\mathrm{C}_{8} \mathrm{H}\right)(22) \end{aligned}$	$\begin{aligned} & 1293 \text { sh } \\ & 1290 \end{aligned}$	$\beta(\mathrm{CH})+\nu(\mathrm{r})$	1307	$\delta\left(\mathrm{ND}_{2}\right)+\beta\left(\mathrm{C}_{2} \mathrm{H}\right)$
1386	1261	$\begin{aligned} & \nu\left(\mathrm{N}_{3} \mathrm{C}_{4}\right)(29) \\ & \beta\left(\mathrm{C}_{8} \mathrm{H}\right)(23) \\ & \delta\left(\mathrm{CH}_{3}\right)(15) \end{aligned}$	1259	$\beta(\mathrm{CH})$		
1348	1226	$\begin{aligned} & \nu\left(\mathrm{C}_{4} \mathrm{~N}_{9}\right)(14) \\ & \beta\left(\mathrm{C}_{8} \mathrm{H}\right)(16) \end{aligned}$	1235	$\beta(\mathrm{ND})+\beta(\mathrm{CH})$		
1307 1301	1189 1183	$\delta\left(\mathrm{ND}_{2}\right)(57)$				
1301	1183	$\begin{aligned} & \nu\left(\mathrm{C}_{4} \mathrm{C}_{5}\right)(13) \\ & \nu\left(\mathrm{N}_{3} \mathrm{C}_{4}\right)(14) \\ & \nu\left(\mathrm{C}_{2} \mathrm{~N}_{3}\right)(13) \\ & \nu\left(\mathrm{N}_{1} \mathrm{C}_{2}\right)(16) \\ & \delta\left(\mathrm{ND}_{2}\right)(13) \end{aligned}$	1194	$\nu\left(\mathrm{C}-\mathrm{ND}_{2}\right)$	1183	$\nu(\mathrm{r})+\nu\left(\mathrm{N}-\mathrm{CH}_{3}\right)$
1271	1156	$\delta\left(\mathrm{CH}_{3}\right)(90)$				
1264	1149	$\begin{aligned} & \nu\left(\mathrm{N}_{3} \mathrm{C}_{4}\right)(12) \\ & \nu\left(\mathrm{N}_{1} \mathrm{C}_{2}\right)(11) \\ & \nu\left(\mathrm{N}_{1} \mathrm{C}_{6}\right)(32) \\ & \mathrm{r}\left(\mathrm{ND}_{2}\right)(10) \end{aligned}$				
1134	1031	$\begin{aligned} & \nu\left(\mathrm{N}_{7} \mathrm{C}_{8}\right)(37) \\ & \delta\left(\mathrm{r}_{4}\right)(18) \\ & \delta\left(\mathrm{CH}_{3}\right)(36) \end{aligned}$	1063	$\beta(\mathrm{CH})$		
1133	1030	$\gamma\left(\mathrm{C}_{2} \mathrm{H}\right)(100)$				
1114 1029	1013 936	$\begin{aligned} & \nu\left(\mathrm{C}_{6} \mathrm{~N}_{10}\right)(11) \\ & \delta\left(\mathrm{r}_{1}\right)(10) \\ & \delta\left(\mathrm{r}_{4}\right)(14) \end{aligned}$	957 937	$\delta(\mathrm{r})$ $\gamma(\mathrm{CH})$		
1029	936	$\gamma\left(\mathrm{C}_{8} \mathrm{H}\right)(85)$	937	$\gamma(\mathrm{CH})$		

Table VII (Continued)

9-methyladenine- d_{2}			9-methyladenine- d_{2} in Ar matrix		AMP- d_{2} (Raman)	
calc	scaled ${ }^{\text {a }}$	descrptn ${ }^{\text {b }}$	exp	descrptn	exp	descrptn
986	896	$\begin{aligned} & \gamma\left(\mathrm{C}_{8} \mathrm{H}\right)(18) \\ & \gamma\left(\mathrm{C}_{6} \mathrm{~N}_{10}\right)(16) \\ & \chi\left(\mathrm{r}_{1}\right)(42) \\ & \chi\left(\mathrm{r}_{4}\right)(21) \end{aligned}$	883	$\gamma(\mathrm{CH})$		
968	880	$\begin{aligned} & \nu\left(\mathrm{N}_{1} \mathrm{C}_{6}\right)(11) \\ & \delta\left(\mathrm{r}_{1}\right)(34) \\ & \delta\left(\mathrm{r}_{3}\right)(14) \end{aligned}$	868	$\delta(\mathrm{r})$	910	$\delta(\mathrm{r})+\nu(\mathrm{r})$
932	847	$\begin{aligned} & \nu\left(\mathrm{N}_{1} \mathrm{C}_{2}\right)(27) \\ & \mathrm{r}\left(\mathrm{ND}_{2}\right)(52) \end{aligned}$				
827	752	$\begin{aligned} & \gamma\left(\mathrm{C}_{6} \mathrm{~N}_{10}\right)(41) \\ & \chi\left(\mathrm{r}_{5}\right)(16) \\ & \chi\left(\mathrm{r}_{6}\right)(15) \end{aligned}$	806	$\delta(\mathrm{r})$		
801	728	$\begin{aligned} & \nu\left(\mathrm{N}_{7} \mathrm{C}_{8}\right)(10) \\ & \nu\left(\mathrm{C}_{4} \mathrm{~N}_{9}\right)(27) \\ & \delta\left(\mathrm{r}_{3}\right)(26) \\ & \delta\left(\mathrm{r}_{4}\right)(21) \end{aligned}$			721	$\delta\left(\mathrm{CH}_{3}\right)$
762	693	$\begin{aligned} & \nu\left(\mathrm{C}_{4} \mathrm{C}_{5}\right)(27) \\ & \nu\left(\mathrm{N}_{1} \mathrm{C}_{6}\right)(10) \\ & \delta\left(\mathrm{r}_{4}\right)(10) \\ & \delta\left(\mathrm{r}_{5}\right)(13) \end{aligned}$	664	$\delta(\mathrm{r})$		
748	680	$\begin{aligned} & x\left(r_{4}\right) \\ & \chi\left(r_{5}\right) \end{aligned}$				
643	585	$\begin{aligned} & \chi\left(r_{1}\right)(30) \\ & \chi\left(r_{2}\right)(16) \\ & \chi\left(r_{3}\right)(23) \\ & \chi\left(r_{4}\right)(10) \\ & \chi\left(r_{5}\right) \end{aligned}$				
591	537	$\begin{aligned} & \nu\left(\mathrm{N}_{9} \mathrm{C}_{11}\right)(21) \\ & \nu\left(\mathrm{C}_{4} \mathrm{~N}_{9}\right)(12) \\ & \delta\left(\mathrm{r}_{5}\right)(31) \end{aligned}$			560	$\beta\left(\mathrm{C}_{6} \mathrm{~N}_{10}\right)+\delta(\mathrm{r})$
577 571	525 519	$\begin{aligned} & \beta\left(N_{9} C_{11}\right)(14) \\ & \delta\left(r_{2}\right)(17) \\ & \delta\left(r_{3}\right)(22) \end{aligned}$			530	$\delta(\mathrm{r})$
571	519	$\begin{aligned} & \nu\left(\mathrm{N}_{1} \mathrm{C}_{6}\right)(13) \\ & \delta\left(\mathrm{r}_{2}\right)(54) \end{aligned}$				
455	414	$\mathrm{t}\left(\mathrm{ND}_{2}\right)$	412	$\mathrm{w}\left(\mathrm{ND}_{2}\right)$		
419 356	381 323	$\begin{aligned} & \mathrm{w}\left(\mathrm{ND}_{2}\right)(93) \\ & \gamma\left(\mathrm{N}_{9} \mathrm{C}_{11}\right)(13) \\ & \chi\left(\mathrm{r}_{2}\right)(10) \\ & \chi\left(\mathrm{r}_{3}\right)(47) \\ & \chi\left(\mathrm{r}_{4}\right)(18) \end{aligned}$			385	$\beta\left(\mathrm{C}_{6} \mathrm{~N}_{10}\right)+\delta\left(\mathrm{CH}_{3}\right)$
314 289	286	$\begin{aligned} & \beta\left(\mathrm{C}_{6} \mathrm{~N}_{10}\right) \\ & \beta\left(\mathrm{N}_{9} \mathrm{C}_{11}\right) \end{aligned}$			300	$\beta\left(\mathrm{C}_{6} \mathrm{~N}_{10}\right)+\delta\left(\mathrm{CH}_{3}\right)+\delta(\mathrm{r})$
289	263	$\begin{aligned} & \gamma\left(\mathrm{C}_{6} \mathrm{~N}_{10}\right)(14) \\ & \gamma\left(\mathrm{N}_{9} \mathrm{C}_{11}\right)(27) \\ & \chi\left(\mathrm{r}_{6}\right)(41) \end{aligned}$				
223	203	$\begin{aligned} & \gamma\left(N_{9} C_{11}\right)(16) \\ & \chi\left(r_{2}\right)(55) \\ & \chi\left(r_{6}\right)(21) \end{aligned}$				
221	201	$\begin{aligned} & \beta\left(\mathrm{C}_{6} \mathrm{~N}_{10}\right) \\ & \beta\left(\mathrm{N}_{9} \mathrm{C}_{11}\right)(32) \\ & \delta\left(\mathrm{r}_{3}\right)(17) \end{aligned}$				
127	116 <100	$\begin{aligned} & \gamma\left(\mathrm{N}_{9} \mathrm{C}_{11}\right) \\ & \chi\left(\mathrm{r}_{3}\right)(157) \\ & \chi\left(\mathrm{r}_{4}\right)(14) \\ & \mathrm{t}\left(\mathrm{CH}_{3}\right)(100) \end{aligned}$				

[^7]group and $\nu(\mathrm{ND})$ stretching vibrations. The calculated frequency splitting between the two tautomers is $6-7 \mathrm{~cm}^{-1}$ for these modes. The presence of bands at 1619 and $1610 \mathrm{~cm}^{-1}$ in the Ar spectrum, and at $1610 \mathrm{~cm}^{-1}$ in the Raman spectrum, confirms the assignment of the band at $1618 \mathrm{~cm}^{-1}$ in the matrix spectrum of adenine to pyrimidine ring stretching modes. The band at $1497 \mathrm{~cm}^{-1}$ in the Ar spectrum has been assigned by Sheina et al. ${ }^{9}$ to $\beta(\mathrm{ND})$ bending deformations. Our calculations suggest the assignment of bands at 1497,1485 , and $1482 \mathrm{~cm}^{-1}$ to $\beta(\mathrm{CH})$ and $\nu(\mathrm{r})$ modes, in accord with the presence of similar bands in the spectrum of adenine. The calculated mode at $1404 \mathrm{~cm}^{-1}$ for the $\mathrm{N}_{9}-\mathrm{D}$ tautomer suggests that the band at $1424 \mathrm{~cm}^{-1}$ in the Raman spectrum is associated with $\nu(\mathrm{r})$ and $\beta\left(\mathrm{C}_{2} \mathrm{H}\right)$ vibrations, rather than $\mathrm{C}_{8} \mathrm{H}$ bending deformations as proposed by Majoube. ${ }^{11}$ The bands at 1372 and $1333 \mathrm{~cm}^{-1}$ in the Raman spectrum may correspond to $\mathrm{C}_{2} \mathrm{H}$ bending
vibrations and pyrimidine ring stretching deformations, respectively; the assignment made by Majoube ${ }^{11}$ has these two modes in the inverse order. We also propose assigning the bands at 1305 , 1250, and $1230 \mathrm{~cm}^{-1}$ in the Raman spectrum to $\beta\left(\mathrm{C}_{8} \mathrm{H}\right), \nu(\mathrm{r})$, and $\delta\left(\mathrm{ND}_{2}\right)$ modes, respectively. Majoube ${ }^{11}$ has associated the first two bands with $\delta\left(\mathrm{ND}_{2}\right)$ vibrations, and the third band with the $\beta\left(\mathrm{C}_{8} \mathrm{H}\right)$ mode. Our assignment is supported by the presence of corresponding bands at 1307 and $1248 \mathrm{~cm}^{-1}$ in the Raman spectrum of adenine. The band at $1186 \mathrm{~cm}^{-1}$ in the Ar spectrum may either correspond to $\delta\left(\mathrm{ND}_{2}\right)$ or $\nu(\mathrm{r})$ deformations. Sheina et al. ${ }^{9}$ assigned this band to $\nu\left(\mathrm{C}_{6} \mathrm{~N}_{10}\right)$ vibrations. Our calculations predict $\mathrm{C}_{6}-\mathrm{N}_{10}$ stretching deformations to give rise to lines at 1404 and $1369 \mathrm{~cm}^{-1}$ in the $\mathrm{N}_{9}-\mathrm{D}$ and $\mathrm{N}_{7}-\mathrm{D}$ tautomers, respectively, in accord with bands observed in the spectra of adenine and its deuterated derivatives. The bands at 958 and $933 \mathrm{~cm}^{-1}$ in the

Ar and Raman spectra, respectively, have been assigned by Sheina et al. ${ }^{9}$ and Majoube ${ }^{11}$ to $\beta($ ND $)$ modes, while the Ar band at 846 cm^{-1} and the Raman band at $888 \mathrm{~cm}^{-1}$ have been associated with $\delta(\mathrm{r})$ modes. Our calculations assign these bands in the reverse order: the frequencies calculated at 945 and $926 \mathrm{~cm}^{-1}$ for the $\mathrm{N}_{7}-\mathrm{D}$ and $\mathrm{N}_{9}-\mathrm{D}$ tautomers, respectively, correspond to $\delta(\mathrm{r})$ modes; the lines calculated at 887 and $884 \mathrm{~cm}^{-1}$ are associated with β (ND) and $\delta(\mathrm{r})$ modes. Our calculations suggest that the band at 794 cm^{-1} in the Ar spectrum be assigned to the $\mathrm{r}\left(\mathrm{ND}_{2}\right)$ mode, with contributions from $\nu(\mathrm{r})$ deformations, and not to $\delta(\mathrm{r})$ modes, as suggested by Sheina. ${ }^{9}$ Lines at 898 and $896 \mathrm{~cm}^{-1}$ have been calculated for out-of-plane ring deformation modes for the $\mathrm{N}_{9}-\mathrm{D}$ and $\mathrm{N}_{7}-\mathrm{D}$ tautomers, respectively, close to the frequencies calculated for $\mathrm{N}_{9}-\mathrm{H}$ and $\mathrm{N}_{7}-\mathrm{H}$ adenine; we suggest the assignment of the bands at 864 and $858 \mathrm{~cm}^{-1}$ in the Ar spectrum to $\chi(\mathrm{r})$, and not $\gamma(\mathrm{CH})$ modes, as proposed by Sheina et al. ${ }^{9}$ As was the case for $\mathrm{N}_{9}-\mathrm{H}$ adenine, our calculations suggest the assignment of the band at $798 \mathrm{~cm}^{-1}$ in the Raman spectrum to $\gamma\left(\mathrm{C}_{6} \mathrm{~N}_{10}\right)$ and $\chi(\mathrm{r})$ deformations, and not to the $\gamma\left(\mathrm{C}_{2} \mathrm{H}\right)$ mode, as proposed by Majoube. ${ }^{11}$ The unassigned bands at 650 and $508 \mathrm{~cm}^{-1}$ in the Raman spectrum may correspond to $\chi(\mathrm{r})$ and $\gamma(\mathrm{N}, \mathrm{D})$ modes, respectively. The band at $473 \mathrm{~cm}^{-1}$ in the IR spectrum of polycrystalline adenine- d_{3} has been assigned by Majoube ${ }^{11}$ to wagging deformations of the $-\mathrm{ND}_{2}$ group; our calculations give lower frequencies for the out-of-plane vibrations of the amino group in the $\mathrm{N}_{9}-\mathrm{D}$ tautomer: 416 and $381 \mathrm{~cm}^{-1}$ for the torsion and wagging modes, respectively. Our results suggest that the unassigned band at $238 \mathrm{~cm}^{-1}$ in the Raman spectrum may be associated with out-of-plane butterfly and ring bending deformations.

As was the case for the undeuterated species, in the crystal only the presence of the $\mathrm{N}_{9}-\mathrm{D}$ tautomer is detected experimentally. The low-temperature argon matrix spectrum seems again to be best interpreted when the two tautomeric forms of adenine- d_{3}, $\mathrm{N}_{9}-\mathrm{D}$ and $\mathrm{N}_{7}-\mathrm{D}$, are taken into account. The rms deviation of the scaled $4-21 \mathrm{G}$ frequencies from the experimental values is 2%, which supports the transferability of the force constants calculated for the undeuterated parent compounds to the deuterated derivatives.
3.2.5. 9-Methyladenine- \boldsymbol{d}_{2}. The vibrational spectrum calculated for N -deuterated 9 -methyladenine is presented in Table VII, together with the Ar matrix spectrum of $9-\mathrm{MA}-d_{2}{ }^{9}$ and the Raman spectrum of 5^{\prime}-AMP- d_{2} in water. ${ }^{14.15,51}$ Only the discrepancies between our calculations and the assignments proposed by Sheina et al. ${ }^{9}$ for the Ar spectrum of deuterated 9-MA and by Majoube ${ }^{51}$ for deuterated AMP will be discussed here. The band at 1307 cm^{-1} in the spectrum of AMP has been associated by Majoube ${ }^{51}$ with bending modes of the $-\mathrm{ND}_{2}$ and $-\mathrm{C}_{2} \mathrm{H}$ groups. Our assignment has this mode correspond to pyrimidine ring stretching deformations, with a contribution from the $\beta\left(\mathrm{C}_{8} \mathrm{H}\right)$ mode. The calculated frequency for the $\delta\left(\mathrm{ND}_{2}\right)$ mode is $1189 \mathrm{~cm}^{-1}$. The band at $1194 \mathrm{~cm}^{-1}$ in the Ar spectrum of $9-\mathrm{MA}-d_{2}$ is assigned here to ring stretching modes, and not $\nu\left(\mathrm{C}_{6} \mathrm{~N}_{10}\right)$ deformations, as proposed by Sheina et al. ${ }^{9}$ contributions from the $\nu\left(\mathrm{C}_{6} \mathrm{~N}_{10}\right)$ mode have been obtained here for higher frequency vibrations (1477 and 1367 cm^{-1}). The band at $721 \mathrm{~cm}^{-1}$ in the Raman spectrum of deuterated AMP may be associated with ring stretching and bending modes, similarly to the band at $727 \mathrm{~cm}^{-1}$ in the spectrum of undeuterated AMP; Majoube ${ }^{51}$ has this band assigned to the stretching and bending modes of the $-\mathrm{N}_{9} \mathrm{R}$ group. As in the spectrum of the undeuterated compound, we propose to assign the band at 560 cm^{-1} in the spectrum of AMP- d_{2} to ring bending deformations,
with contributions from $\nu\left(\mathrm{N}_{9} \mathrm{C}_{11}\right)$ and $\nu(\mathrm{r})$ modes, and not to $\nu\left(\mathrm{C}_{6} \mathrm{~N}_{10}\right)$ vibrations, as suggested by Majoube. ${ }^{51}$ The low-frequency in-plane vibrations due to $\beta\left(\mathrm{C}_{6} \mathrm{~N}_{10}\right)$ and $\beta\left(\mathrm{N}_{9} \mathrm{C}_{11}\right)$ modes are calculated here at 286 and $201 \mathrm{~cm}^{-1}$. As was the case for undeuterated AMP, we assign the band at $300 \mathrm{~cm}^{-1}$ in the Raman spectrum of AMP- d_{2} to $\beta\left(\mathrm{C}_{6} \mathrm{~N}_{10}\right)$ and $\beta\left(\mathrm{N}_{9} \mathrm{C}_{11}\right)$ in-plane deformations, and the band at $385 \mathrm{~cm}^{-1}$ to out-of-plane skeletal ring vibrations.

Overall a good agreement between the calculated and experimental spectra of $9-\mathrm{MA}-d_{2}$ has been obtained. The rms deviation of the scaled $4-21 \mathrm{G}$ frequencies from the values in the argon matrix spectrum is 2%, which again supports the transferability of the force constants calculated for the undeuterated compound to the deuterated derivative.

4. Conclusions

The structures of $\mathrm{N}_{9}-\mathrm{H}$ and $\mathrm{N}_{7}-\mathrm{H}$ tautomers of adenine and 9 -methyladenine have been optimized and found to be planar in a 4-21G Hartree-Fock calculation. The structures are in good agreement with experimental results.

Ab initio 4-2 IG vibrational spectra of adenine, its 9-methyl derivative, and N -deuterated analogues made it possible to examine previously assigned fundamental modes and to propose a number of new assignments. Overall, the agreement between the experimental argon matrix and calculated results is very good; for the scaled ab initio frequencies the deviation from experiment is 3% for the entire frequency range. Although only the $\mathrm{N}_{9}-\mathrm{H}$ tautomer is detected in spectra of polycrystalline adenine, the spectrum of adenine in the low-temperature argon matrix was found to be consistent with the superposition of spectra calculated for the $\mathrm{N}_{9}-\mathrm{H}$ and $\mathrm{N}_{7}-\mathrm{H}$ tautomers, which suggests that both species are present: this is in disagreement with expectations from the calculated energy difference ($10.6 \mathrm{kcal} \mathrm{mol}^{-1}$ favoring the $\mathrm{N}_{9}-\mathrm{H}$ form). However, it is possible that the results observed in the argon matrix spectrum are due to band splitting. Further studies are required to resolve this question.

The spectrum calculated for 9 -methyladenine proved to be useful in analyzing the spectra of adenine, adenosine, and other more complex derivatives. The normal modes calculated for deuterated derivatives of adenine and 9 -methyladenine have verified and confirmed band assignments for undeuterated molecules.

The 4-21G optimized geometries, charges, and force constants calculated for adenine and its derivatives will be used to develop a force field for nucleosides, nucleotides, and their polymers. ${ }^{54}$

Acknowledgment. Time on the CRAY X-MP computer was provided by Cray Research Inc., Mendota Heights, MN. We thank Dr. Eric Wimmer and John Mertz as well as the computing staff at Cray Research for their assistance. Helpful discussions with Dr. Krzysztof Kuczera are gratefully acknowledged. This work was supported in part by the National Science Foundation and the National Institutes of Health.

Registry No. N9-H, 66224-65-5; N9-D, 124992-87-6; N7-H, $71660-$ 29-2; N7-D, 124992-87-6; adenine, 73-24-5; 9-methyladenine, 700-00-5; 9-methyladenine- d_{2}, 18372-37-7.

[^8] tion.

[^0]: ${ }^{\dagger}$ On leave from the Institute of Biochemistry and Biophysics, Polish Academy of Sciences, u1. Rakowiecka 36, 02-532 Warsaw, Poland.

[^1]: (1) Ferenczy, G.; Harsānyi, L.; Rozsondai, B.; Hargittai, I. J. Mol. Struct. 1986, 140, 71.
 (2) Fan, K.; Boggs, J. E. THEOCHEM 1986, 139, 283
 (3) Harsånyi, L.; Csāszăr, P.; Csăszâr, A.; Boggs, J, E. Int. J. Quantum Chem. 1986, 29, 799
 (4) Szczȩs̃niak, M.; Szczepaniak, K.; Kwiatkowski, J. S.; KuBulat, K.; Person, W. B. J. Am. Chem. Soc. 1988, IIO, 8319.
 (5) Kuczera, K.; Szczȩs̄niak, M.; Szczepaniak, K. J. Mol. Struct. 1988, 172, 73.
 (6) Kuczera, K.; Szczęs̄niak, M.; Szczepaniak, K. J. Mol. Struct. 1988. 172, 89.
 (7) Kuczera, K.; Szczȩşniak, M.; Szczepaniak, K. J. Mol. Struct. 1988, 172, 103.
 (8) Nishimura, Y.; Tsuboi, M. Chem. Phys. 1985, 98, 71.
 (9) Siepanian, S. G.; Sheina, G. G.; Radchenko, E. D.; Blagoi, Yu. P. J. Mol. Struct. 1985, $131,333$.
 (10) Nowak, M. J.; Lapinski, L.; Kwiatkowski, J. S. Chem. Phys. Lett. 1989, 157, 14.
 (11) Majoube, M. J. Raman Spectrosc. 1985, 16, 98.
 (12) Savoie, R.; Poirier, D.; Prizant, L.; Beauchamp, A. L. J. Raman Spectrosc. 1981, $M, 481$.
 (13) Letellier, R.; Ghomi, M.; Taillandier, E. Eur. Biophys. J. 1987, 14, 243.
 (14) Livramento, J.: Thomas, G. J. J. Am. Chem. Soc. 1974, 96, 6529
 (15) Livramento, J.; Thomas, G. J. Biochemistry 1975, 14, 5210.
 (16) Tsuboi, M.; Takahashi, S.: Harada, I. In Physicochemical Properties of Nucleic Acids; Duchesne, J., Ed.; Academic Press: New York, 1973; Vol. 2, p 91.
 (17) Kyogoku, Y.; Higushi, S.; Tsuboi, M. Spectrochim. Acta 1967, A23, 969.
 (18) Lautiē, A.; Novak, A. J. Chim. Phys. 1974, 71, 415.
 (19) Latajka, Z.; Person, W. B.; Morokuma, K. THEOCHEM 1986, /35, 253.
 (20) Szczepaniak, K.; Szczȩs̃niak, M. J. Mol. Struct. 1987, 156, 29.
 (21) Sheina, G. G.; Stepanian, S. G.; Radchenko, E. D.; Blagoi, Yu. P. J Mol. Struct. 1987, 158, 275.
 (22) Saenger, W. Principles of Nucleic Acid Structure; Springer-Verlag: New York, 1984.
 (23) Majoube, M. J. Mol. Struct. 1986, 143, 427.
 (24) Csāszār, P.; Harsānyi, L.; Boggs, J. E. Int. J. Quantum Chem. 1988, 33, 1.
 (25) Pulay, P.; Fogarasi, G.; Boggs, J. E. J. Chem. Phys. 1981, 74, 3999
 (26) Guo, H.; Karplus, M. J. Chem. Phys. 1988, 89, 4235.
 (27) Sygula, A.; Buda, A. J. Mol. Struct. 1985, 121, 133.
 (28) Pullman, B.; Pullman, A. Adv. Heterocycl. Chem. 1971, 13, 77.
 (29) Boyd, D. B. J. Am. Chem. Soc. 1972, 94, 64.
 (30) Jordan, F.; Sostman, H. D. J. Am. Chem. Soc. 1972, 94, 7898.

[^2]: (31) Binkley, J. S.; Pople, J. A.; Hehre, W. J. J. Am. Chem. Soc. 1980, 102, 939 .
 (32) Binkley, J. S.; Frisch, M. J.; DeFrees, D. J. E.; Raghavachari, K.; Whiteside, R. S.: Schlegel, H. B.; Fluder, E. M.; Pople, J. A. GAUSSIAN 82; Carnegle Mellon University: Pittsburgh, PA, 1982.
 (33) Taylor, R.; Kennard, O. J. Mol. Struct. 1982, 78, 1.
 (34) Kuczera, K.: Wiôrkiewicz-Kuczera, J. MOLV1B—program for molecular vibrational spectroscopy. 1988.
 (35) Keresztury, G.; Jalsovszky, G. J. Mol. Struct. 1971, 10, 304.
 (36) Wilson, E. B., Jr.; Decius, J. C.; Cross, P. C. Molecular Vibrations; McGraw-Hill: New York, 1950.
 (37) Kuczera, K. J. Mol. Struct. 1987, 160, 159.

[^3]: ${ }^{\text {a }}$ Atom numbering as in Figure 1. ${ }^{b}$ Average value from 21 crystal structures of adenine and its derivatives from ref 33. ${ }^{\text {c }}$ SD, standard deviation of distribution. dl 9 -methyladenine the atom numbering is slightly different from that in adenine (see Figure 1). Consequently the adenine coordinates listed in this table corresponding to 9 -methyladenine are given in parentheses. They are $\mathrm{C}_{2}-\mathrm{H}_{12}, \mathrm{C}_{8}-\mathrm{H}_{13}, \mathrm{~N}_{1}-\mathrm{C}_{2}-\mathrm{H}_{12}, \mathrm{~N}_{3}-\mathrm{C}_{2}-\mathrm{H}_{12}, \mathrm{~N}_{7}-$ $\mathrm{C}_{8}-\mathrm{H}_{13}$. and $\mathrm{N}_{9}-\mathrm{C}_{8}-\mathrm{H}_{13}$.

 The evaluation of the vibrational frequencies of adenine and methyladenine at the $4-21 \mathrm{G}$ level required 39 and 48 h , respectively, on a

[^4]: (44) Aaron, J.-J.: Gaye, M. D.; Pārkānyi. C.; Cho. N. S.: von Szentpāly, L. L. J. Mol. Struct. 1987, 156, 119.
 (45) DeVoe, H.: Tinoco, 1., Jr. J. Mol. Biol. 1962. 4, 500.
 (46) Chenon, M.-T.; Pugmire, R. J.: Grant, D. M.: Panzica, R. P.: Townsend, L. B. J. Am. Chem. Soc. 1975, 97, 4636.
 (47) Dreyfus, M.: Dobin, G.: Bensaude, O.; Dubuis, J. E. J. Am. Chem. Soc. 1975. 97. 2369.

[^5]: ${ }^{a}$ The scaling factor is $0.91 .{ }^{b}$ Contributions greater than 10% are given.

[^6]: (52) Schachıschneider. J. H.; Snyder. R. G. Spectruchim. Acta 1963. 19. 117.

[^7]: ${ }^{a}$ The scaling factor is $0.91 .{ }^{b}$ Contributions greater than 10% are given.

[^8]: (54) Wiörkiewicz-Kuczera. J.; Karplus. M.. to be submitted for publica-

